Fr. 135.00

Plate Deformation from Cradle to Grave - Seismic Anisotropy and Deformation at Mid-Ocean Ridges and in the Lowermost Mantle

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

The Earth's rocky mantle convects to lose heat, which comes from the liquid iron core below. The mantle's interfaces - the core-mantle boundary, and the lithosphere - may hold the key to understanding mantle motion because of the seismic anisotropy present in these parts of the Earth.

In this thesis, Andy Nowacki presents a precise but comprehensive review of the current state of the art in studying flow with anisotropy, mineral physics and geodynamics. New measurements of shear wave anisotropy in the lowermost mantle and at mid-ocean ridges are used to constrain mechanisms of creep and melt extraction in the mantle. A model of global flow is used to predict anisotropy in the deep Earth, and novel methods to forward model shear wave splitting are described. Future studies of mantle flow must incorporate the understanding gained in this thesis.

The thesis contains a substantive introduction to the structure of the Earth, seismic anisotropy in general and in the core-mantle boundary region, and mid-ocean ridge processes. It also describes novel methods for forward modelling and interpreting shear wave splitting data. Three chapters present timely research into dynamics at divergent plate boundaries and at the core-mantle boundary.

Sommario

Seismic anisotropy and deformation in the lowermost mantle.- Mantle anisotropy beneath the Earth's mid-ocean ridges.- Deformation of the lowermost mantle from seismic anisotropy.- Predicting lowermost mantle anisotropy using models of mantle flow.

Info autore

Andy Nowacki is currently a seismologist at the University of Bristol whose recent research has focussed on using seismic anisotropy to study the dynamics of the lowermost and uppermost mantles.  Incorporating mineral physics, geodynamics and seismic wave propagation, he has attempted to integrate recent advances in geophysics to better understand the Earth's mantle. Other interests include microseismicity at divergent plate boundaries and volcano seismology.

Riassunto

The Earth's rocky mantle convects to lose heat, which comes from the liquid iron core below.  The mantle's interfaces - the core-mantle boundary, and the lithosphere - may hold the key to understanding mantle motion because of the seismic anisotropy present in these parts of the Earth. 

In this thesis, Andy Nowacki presents a precise but comprehensive review of the current state of the art in studying flow with anisotropy, mineral physics and geodynamics.  New measurements of shear wave anisotropy in the lowermost mantle and at mid-ocean ridges are used to constrain mechanisms of creep and melt extraction in the mantle.  A model of global flow is used to predict anisotropy in the deep Earth, and novel methods to forward model shear wave splitting are described. Future studies of mantle flow must incorporate the understanding gained in this thesis.

The thesis contains a substantive introduction to the structure of the Earth, seismic anisotropy in general and in the core-mantle boundary region, and mid-ocean ridge processes.  It also describes novel methods for forward modelling and interpreting shear wave splitting data.  Three chapters present timely research into dynamics at divergent plate boundaries and at the core-mantle boundary.

Dettagli sul prodotto

Autori Andy Nowacki
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2016
 
EAN 9783662510995
ISBN 978-3-662-51099-5
Pagine 166
Dimensioni 160 mm x 240 mm x 10 mm
Peso 291 g
Illustrazioni XVI, 166 p.
Serie Springer Theses
Springer Theses
Categorie Scienze naturali, medicina, informatica, tecnica > Geoscienze > Geologia

B, Geophysics, geology, Earth and Environmental Science, Solid Earth Sciences, Mineralogy, Earth Sciences, Chemistry of minerals, crystals & gems, Geophysics/Geodesy, Structural Geology, Geomorphology & geological surface processes

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.