Fr. 179.00

Geometry of Hypersurfaces

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area.
Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms.  A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research.

Sommario

Preface.- 1. Introduction.- 2. Submanifolds of Real Space Forms.- 3. Isoparametric Hypersurfaces.- 4. Submanifolds in Lie Sphere Geometry.- 5. Dupin Hypersurfaces.- 6. Real Hypersurfaces in Complex Space Forms.- 7. Complex Submanifolds of CPn and CHn.- 8. Hopf Hypersurfaces.- 9. Hypersurfaces in Quaternionic Space Forms.- Appendix A. Summary of Notation.- References.- Index.

Info autore

Thomas E. Cecil is professor of mathematics at the College of Holy Cross in Worcester, MA, USA. His primary research interests are in differential geometry, in particular, submanifolds.
Patrick J. Ryan is Emeritus professor of mathematical sciences at McMaster University in Hamilton, Ontario, Canada. His primary research interests are in Geometry, in particular, the characterization and classification of hypersurfaces in real and complex space forms.

Riassunto

This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms.

Testo aggiuntivo

“This 600-page book is the result of the authors’ efforts to provide a detailed presentation of the present day differential geometry of hypersurfaces in real, complex, and quaternionic space forms. … A summary of the frequently used notations and an index of notions are included. The book is an essential contribution to the progress of the theory of hypersurfaces.” (Radu Miron, zbMATH 1331.53001, 2016)

Relazione

"This 600-page book is the result of the authors' efforts to provide a detailed presentation of the present day differential geometry of hypersurfaces in real, complex, and quaternionic space forms. ... A summary of the frequently used notations and an index of notions are included. The book is an essential contribution to the progress of the theory of hypersurfaces." (Radu Miron, zbMATH 1331.53001, 2016)

Dettagli sul prodotto

Autori Thomas Cecil, Thomas E Cecil, Thomas E. Cecil, Patrick J Ryan, Patrick J. Ryan
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2016
 
EAN 9781493945078
ISBN 978-1-4939-4507-8
Pagine 596
Dimensioni 154 mm x 236 mm x 35 mm
Peso 920 g
Illustrazioni XI, 596 p. 23 illus.
Serie Springer Monographs in Mathematics
Springer Monographs in Mathematics
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Geometria

B, Mathematics and Statistics, Differential Geometry, Topological Groups, Lie Groups, Topological groups, Lie groups, Topological Groups and Lie Groups, Groups & group theory, Hyperbolic Geometry, Non-Euclidean geometry

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.