Fr. 150.00

Period Mappings and Period Domains

Inglese · Copertina rigida

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni










An introduction to Griffiths' theory of period maps and domains, focused on algebraic, group-theoretic and differential geometric aspects.

Sommario










Part I. Basic Theory: 1. Introductory examples; 2. Cohomology of compact Kähler manifolds; 3. Holomorphic invariants and cohomology; 4. Cohomology of manifolds varying in a family; 5. Period maps looked at infinitesimally; Part II. Algebraic Methods: 6. Spectral sequences; 7. Koszul complexes and some applications; 8. Torelli theorems; 9. Normal functions and their applications; 10. Applications to algebraic cycles: Nori's theorem; Part III. Differential Geometric Aspects: 11. Further differential geometric tools; 12. Structure of period domains; 13. Curvature estimates and applications; 14. Harmonic maps and Hodge theory; Part IV. Additional Topics: 15. Hodge structures and algebraic groups; 16. Mumford-Tate domains; 17. Hodge loci and special subvarieties; Appendix A. Projective varieties and complex manifolds; Appendix B. Homology and cohomology; Appendix C. Vector bundles and Chern classes; Appendix D. Lie groups and algebraic groups; References; Index.

Info autore

James Carlson is Professor Emeritus at the University of Utah. From 2003 to 2012, he was president of the Clay Mathematics Institute, New Hampshire. Most of Carlson's research is in the area of Hodge theory.Stefan Müller-Stach is Professor of number theory at Johannes Gutenberg Universität Mainz, Germany. He works in arithmetic and algebraic geometry, focussing on algebraic cycles and Hodge theory, and his recent research interests include period integrals and the history and foundations of mathematics. Recently, he has published monographs on number theory (with J. Piontkowski) and period numbers (with A. Huber), as well as an edition of some works of Richard Dedekind.Chris Peters is a retired professor from the Université Grenoble Alpes, France and has a research position at the Eindhoven University of Technology, The Netherlands. He is widely known for the monographs Compact Complex Surfaces (with W. Barth, K. Hulek and A. van de Ven, 1984), as well as Mixed Hodge Structures, (with J. Steenbrink, 2008). He has also written shorter treatises on the motivic aspects of Hodge theory, on motives (with J. P. Murre and J. Nagel) and on applications of Hodge theory in mirror symmetry (with Bertin).

Riassunto

This up-to-date introduction to Griffiths' theory of period maps and period domains focusses on algebraic, group-theoretic and differential geometric aspects. The second edition has been thoroughly revised and now includes a new third section covering recent and important new developments in the field.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.