Fr. 41.90

Lösungsverfahren für lineare Gleichungssysteme - Algorithmen und Anwendungen

Tedesco · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

Die Simulation technischer Prozesse erfordert in der Regel die Lösung von linearen Gleichungssystemen großer Dimension. Hierfür werden moderne vorkonditionierte Iterationsverfahren (z.B. CG, GMRES, BiCGStab) hergeleitet und die zur Realisierung notwendigen Algorithmen beschrieben. Für Systeme mit strukturierten Matrizen werden effiziente direkte Lösungsverfahren angegeben. Neben linearen Gleichungssystemen mit Blockstrukturen werden auch Hierarchische Matrizen zur effizienten Beschreibung und Anwendung vollbesetzter Matrizen behandelt. Alle Verfahren werden an einfachen Beispielen erläutert und diskutiert.

Sommario

1 Grundlagen.- 1.1 Normen von Vektoren und Matrizen.- 1.2 Eigenwerte und Singulärwerte.- 1.3 Orthogonalisierung von Vektorsystemen.- 1.4 Tschebyscheff-Polynome.- 2 Lineare Gleichungssysteme.- 2.1 Interpolation.- 2.2 Projektionsmethoden.- 2.3 Finite Element Methoden.- 2.4 Randelementmethoden.- 3 Strukturierte Matrizen.- 3.1 Schnelle Fouriertransformation.- 3.2 Zirkulante Matrizen.- 3.3 Toeplitz Matrizen.- 3.4 Niedrig-Rang-Störung regulärer Matrizen.- 4 Klassische Iterationsverfahren.- 4.1 Stationäre Iterationsverfahren.- 4.2 Gradientenverfahren.- 5 Verfahren orthogonaler Richtungen.- 5.1 Verfahren konjugierter Gradienten.- 5.2 Verfahren des minimalen Residuums.- 5.3 Verfahren biorthogonaler Richtungen.- 6 Gleichungssysteme mit Blockstruktur.- 6.1 Symmetrische Gleichungssysteme.- 6.2 Blockschiefsymmetrische Systeme.- 6.3 Zweifache Sattelpunktprobleme.- 7 Hierarchische Matrizen.- 7.1 Partitionierte Matrizen.- 7.2 Approximation mit Niedrigrang-Matrizen.- 7.3 Arithmetik von Hierarchischen Matrizen.- 7.4 Geometrische Partitionierungen.- 7.5 Niedrigrang-Approximation von Funktionen.- 7.6 Anwendungen in der FEM.- Literatur.

Info autore

Prof. Dr. Olaf Steinbach, Institut für Mathematik, TU Graz

Riassunto

Die Simulation technischer Prozesse erfordert in der Regel die Lösung von linearen Gleichungssystemen großer Dimension. Hierfür werden moderne vorkonditionierte Iterationsverfahren (z.B. CG, GMRES, BiCGStab) hergeleitet und die zur Realisierung notwendigen Algorithmen beschrieben. Für Systeme mit strukturierten Matrizen werden effiziente direkte Lösungsverfahren angegeben. Numerische Beispiele für praktische Problemstellungen illustrieren die Effizienz der vorgestellten Verfahren.

Prefazione

Lösungsverfahren in der Praxis: verständlich und effizient

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.