Fr. 148.00

Nature's Patterns and the Fractional Calculus

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system's functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system's information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences.


Contents
Complexity
Empirical allometry
Statistics, scaling and simulation
Allometry theories
Strange kinetics
Fractional probability calculus

Sommario

Table of Content:
Chapter 1: Complexity Science
1.1 It started with physics
1.2 Complexity
1.3 Measures of size
1.4 Allometry heuristics
1.5 Overview
Chapter 2: Empirical Allometry
2.1 Living networks
2.2 Physical networks
2.3 Natural history
2.4 Sociology
2.5 Summary
Chapter 3 Statistics, Scaling and Simulation
3.1 Interpreting fluctuations
3.2 Phenomenological distributions
3.3 Are ARs universal?
3.4 Summary
Chapter 4: Models & Derivations of ARs
4.1 Optimization principles
4.2 Scaling and allometry
4.3 Stochastic differential equations
4.4 Fokker-Planck equations
4.5 Summary
Chapter 5: Complex and Strange Kinetics
5.1 Fractional thinking
5.2 Fractional rate equations
5.3 Fractional Poisson process
5.4 A closer look at complexity
5.5 Recapitulation
5.6 Appendix
Chapter 6: Fractional Probability Calculus
6.1 Fractional Fokker-Planck equation
6.2 Fully fractional phase space equations
6.3 Entropy entails allometry
6.4 Statistics of allometry parameters
6.5 Discussion and conclusions
6.6 Epilogue

Info autore










Bruce J. West, US Army Research Office, Cary, US

Dettagli sul prodotto

Autori Bruce J West, Bruce J. West
Editore De Gruyter
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.11.2017
 
EAN 9783110534115
ISBN 978-3-11-053411-5
Pagine 199
Dimensioni 170 mm x 19 mm x 240 mm
Peso 498 g
Illustrazioni 48 b/w and 8 col. ill.
Serie Fractional Calculus in Applied Sciences and Engineering
Fractional Calculus in Applied Sciences and Engineering
ISSN
Fractional Calculus in Applied Sciences and Engineering, 2
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.