Fr. 134.00

Symmetries and Integrability of Difference Equations - Lecture Notes of the Abecederian School of SIDE 12, Montreal 2016

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations.
More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. 
Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers. 

Sommario

Chapter 1. Continuous, Discrete and Ultradiscrete Painlevé Equations.- Chapter 2. Elliptic Hypergeometric Functions.- Chapter 3. Integrability of Difference Equations through Algebraic Entropy and Generalized Symmetries.- Chapter 4. Introduction to Linear and Nonlinear Integrable Theories in Discrete Complex Analysis.- Chapter 5. Discrete Integrable Systems, Darboux Transformations and Yang-Baxter Maps.- Chapter 6. Symmetry-Preserving Numerical Schemes.- Chapter 7. Introduction to Cluster Algebras.- Chapter 8. An Introduction to Difference Galois Theory.- Chapter 9. Lectures on Quantum Integrability: Lattices, Symmetries and Physics.

Riassunto

This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations.
More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. 

Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers. 

Dettagli sul prodotto

Con la collaborazione di DECIO LEVI (Editore), Raphaë Rebelo (Editore), Raphaël Rebelo (Editore), Raphaël Verge-Rebelo (Editore), Pavel Winternitz (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 30.06.2017
 
EAN 9783319566658
ISBN 978-3-31-956665-8
Pagine 435
Dimensioni 156 mm x 26 mm x 242 mm
Peso 830 g
Illustrazioni X, 435 p. 67 illus., 26 illus. in color.
Serie CRM Series in Mathematical Physics
CRM Series in Mathematical Physics
Categoria Scienze naturali, medicina, informatica, tecnica > Fisica, astronomia > Fisica teorica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.