Fr. 135.00

Self-organized Criticality and Predictability in Atmospheric Flows - The Quantum World of Clouds and Rain

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book presents a new concept of General Systems Theory and its application to atmospheric physics. It reveals that energy input into the atmospheric eddy continuum, whether natural or manmade, results in enhancement of fluctuations of all scales, manifested immediately in the intensification of high-frequency fluctuations such as the Quasi-Biennial Oscillation and the El-Nino-Southern Oscillation cycles. Atmospheric flows exhibit self-organised criticality, i.e. long-range correlations in space and time manifested as fractal geometry to the spatial pattern concomitant with an inverse power law form for fluctuations of meteorological parameters such as temperature, pressure etc. Traditional meteorological theory cannot satisfactorily explain the observed self-similar space time structure of atmospheric flows. A recently developed general systems theory for fractal space-time fluctuations shows that the larger-scale fluctuation can be visualised to emerge from the space-time averaging of enclosed small-scale fluctuations, thereby generating a hierarchy of self-similar fluctuations manifested as the observed eddy continuum in power spectral analyses of fractal fluctuations. The interconnected network of eddy circulations responds as a unified whole to local perturbations such as global-scale response to El-Nino events.
The general systems theory model predicts an inverse power law form incorporating the golden mean for the distribution of space-time fluctuation patterns and for the power (variance) spectra of the fluctuations. Since the probability distributions of amplitude and variance are the same, atmospheric flows exhibit quantumlike chaos. Long-range correlations inherent to power law distributions of fluctuations are identified as nonlocal connection or entanglement exhibited by quantum systems such as electrons or photons. The predicted distribution is close to the Gaussian distribution for small-scale fluctuations, but exhibits a fat long tail for large-scale fluctuations. Universal inverse power law for fractal fluctuations rules out unambiguously linear secular trends in climate parameters.

Sommario

Preface.-  Chapter 1 Noise or Random Fluctuations in Physical Systems: A Review.-  Chapter 2 Self-Organised Criticality: A Signature of Quantum-like Chaos in Atmospheric Flows.-  Chapter 3 Universal inverse power-law distribution for temperature and rainfall in the UK region.-  Chapter 4 Signatures of universal characteristics of fractal fluctuations in global mean monthly temperature anomalies.       

Riassunto

This book presents a new concept of General Systems Theory and its application to atmospheric physics. It reveals that energy input into the atmospheric eddy continuum, whether natural or manmade, results in enhancement of fluctuations of all scales, manifested immediately in the intensification of high-frequency fluctuations such as the Quasi-Biennial Oscillation and the El-Nino–Southern Oscillation cycles. Atmospheric flows exhibit self-organised criticality, i.e. long-range correlations in space and time manifested as fractal geometry to the spatial pattern concomitant with an inverse power law form for fluctuations of meteorological parameters such as temperature, pressure etc. Traditional meteorological theory cannot satisfactorily explain the observed self-similar space time structure of atmospheric flows. A recently developed general systems theory for fractal space-time fluctuations shows that the larger-scale fluctuation can be visualised to emerge from the space-time averaging of enclosed small-scale fluctuations, thereby generating a hierarchy of self-similar fluctuations manifested as the observed eddy continuum in power spectral analyses of fractal fluctuations. The interconnected network of eddy circulations responds as a unified whole to local perturbations such as global-scale response to El-Nino events.
The general systems theory model predicts an inverse power law form incorporating the golden mean τ for the distribution of space-time fluctuation patterns and for the power (variance) spectra of the fluctuations. Since the probability distributions of amplitude and variance are the same, atmospheric flows exhibit quantumlike chaos. Long-range correlations inherent to power law distributions of fluctuations are identified as nonlocal connection or entanglement exhibited by quantum systems such as electrons or photons. The predicted distribution is close to the Gaussian distribution for small-scale fluctuations, but exhibits a fat long tail for large-scale fluctuations. Universal inverse power law for fractal fluctuations rules out unambiguously linear secular trends in climate parameters.

Dettagli sul prodotto

Autori Mary Selvam Amujuri, Amujuri Mary Selvam
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 30.06.2017
 
EAN 9783319545455
ISBN 978-3-31-954545-5
Pagine 139
Dimensioni 159 mm x 15 mm x 240 mm
Peso 356 g
Illustrazioni XIX, 139 p. 24 illus.
Serie Springer Atmospheric Sciences
Springer
Springer Atmospheric Sciences
Categorie Scienze naturali, medicina, informatica, tecnica > Geoscienze > Altro

B, Earth and Environmental Science, Meteorology & climatology, Earth System Sciences, Nonlinear science, Atmospheric Sciences, Dynamics & statics, Applications of Nonlinear Dynamics and Chaos Theory, Statistical physics, Nonlinear Optics, Climatology

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.