Fr. 65.00

Algorithms for Prediction of Upper Body Power of Cross-Country Skiers - Prediction of Upper Body Power of Cross-Country Skiers Using Machine Learning Methods Combined With Feature Selection

Inglese · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Upper body power (UBP) is one of the most important factors affecting the performance of cross-country skiers during races. The purpose of this study is to develop new prediction models for predicting the 10-second UBP (UBP10) and 60-second UBP (UBP60) of cross-country skiers by using General Regression Neural Networks (GRNN), Radial-Basis Function Network (RBF), Multilayer Perceptron (MLP), Support Vector Machine (SVM), Single Decision Tree (SDT) and Tree Boost (TB) along with the Relief-F feature selection algorithm, minimum redundancy maximum relevance (mRMR) feature selection algorithm and the Correlation-based Feature Subset Selection (CFS). Several models have been developed to predict UBP10 and UBP60 of cross-country skiers using two datasets. 10-fold cross validation has been performed for model testing. The efficiency of the prediction models has been calculated with their multiple correlation coefficients (R's), standard error of estimates (SEE's) and mean absolute percentage errors (MAPE's). The results emphasize that GRNN-based prediction models show higher performance than the other regression methods.

Info autore










Mustafa Mikail ÖZÇ¿LO¿LU was born in Kilis, Turkey, in 1985. He received his BSc, MSc and PhD degrees from the Department of Computer Engineering of Mersin University, the Department of Computer Engineering of TOBB Economy and Technology University and the Department of Electrical and Electronics Engineering of Cukurova University, respectively.

Dettagli sul prodotto

Autori Mehmet Fatih Akay, Mustafa Mikail Özçilo¿lu, Mustafa Mikai Özçiloglu, Mustafa Mikail Özçiloglu
Editore LAP Lambert Academic Publishing
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2017
 
EAN 9783330020290
ISBN 978-3-33-002029-0
Pagine 100
Categoria Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.