Fr. 25.50

In Silico Modeling and Identification of Novel Epitopes-based Vaccine of M polyprotein (Gn/Gc) against Schmallenberg Virus for Ruminants

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Research Paper (postgraduate) from the year 2016 in the subject Computer Science - Bioinformatics, , language: English, abstract: Schmallenberg (SBV) is a new virus of the Bunyaviridae family within the genus Orthobunyavirus. The viral infection causes mild clinical signs: fever, reduced milk production and diarrhea, as well as considerable economic loss.There is currently no treatment or vaccine for infected animals. We aimed to design a peptide vaccine using an Immunoinformatics approach to stimulate the immune system and reduce the potentially negative effects of using live vaccines.In this study, a total of 47 strains of complete M polyprotein sequence (Gn/NSm/GC) and 61 strains of nonstructural protein in S segment (NSs) of Schmallenberg virus which were chosen for this study were taken from NCBI. Potentially continuous B and T cell epitopes were predicted using tools from immune epitope data base analysis resource (IEDB-AR).We found that Gn and Gc regions of M polyprotein in SBV were clearly suitable and could be used for the preparation of immunological constructs. Our studies suggest that: B cell epitope 764QQQACSS770 and CTL epitopes 251YMYNKYFKL259, 46SECCVKDDI54 and 234IVYVFIPIF242 could be used as a potential vaccine candidate against SBV.We consider this study distinctive because no research ever dealt with peptide-based vaccines on virulent strains of SBV using an in silico approach.

Info autore

Marwa Mohamed Osman was awarded MS.c. degree in Microbiology from Sudan Academy of Sciences. She is an Associate Researcher at Africa city of Technology,Sudan-Khartoum. She has published more than 10 papers in word renowned journals. She has been member of American society of Clinical Pathology (ASCPi) as International Medical Scientist.

Dettagli sul prodotto

Autori Et Al, Et Al., Marw Osman, Marwa Osman
Editore Grin Verlag
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2016
 
EAN 9783668335295
ISBN 978-3-668-33529-5
Pagine 36
Dimensioni 148 mm x 210 mm x 2 mm
Peso 68 g
Categorie Guide e manuali
Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Altro
Scienze naturali, medicina, informatica, tecnica > Medicina

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.