Fr. 141.60

Fundamentals of Nonparametric Bayesian Inference

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni










Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.

Sommario










Preface; Glossary of symbols; 1. Introduction; 2. Priors on function spaces; 3. Priors on spaces of probability measures; 4. Dirichlet processes; 5. Dirichlet process mixtures; 6. Consistency: general theory; 7. Consistency: examples; 8. Contraction rates: general theory; 9. Contraction rates: examples; 10. Adaptation and model selection; 11. Gaussian process priors; 12. Infinite-dimensional Bernstein-von Mises theorem; 13. Survival analysis; 14. Discrete random structures; Appendices; References; Author index; Subject index.

Info autore










Subhashis Ghosal is Professor of Statistics at North Carolina State University. His primary research interest is in the theory, methodology and various applications of Bayesian nonparametrics. He has edited one book, written nearly one hundred papers, and serves on the editorial boards of the Annals of Statistics, Bernoulli, and the Electronic Journal of Statistics. He is an elected fellow of the Institute of Mathematical Statistics, the American Statistical Association and the International Society for Bayesian Analysis.

Riassunto

Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.