Fr. 70.00

Haptic Rendering for Simulation of Fine Manipulation

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book introduces the latest progress in six degrees of freedom (6-DoF) haptic rendering with the focus on a new approach for simulating force/torque feedback in performing tasks that require dexterous manipulation skills. One of the major challenges in 6-DoF haptic rendering is to resolve the conflict between high speed and high fidelity requirements, especially in simulating a tool interacting with both rigid and deformable objects in a narrow space and with fine features. The book presents a configuration-based optimization approach to tackle this challenge. Addressing a key issue in many VR-based simulation systems, the book will be of particular interest to researchers and professionals in the areas of surgical simulation, rehabilitation, virtual assembly, and inspection and maintenance.

Sommario

1. Introduction.- 2. Configuration-based Optimization Approach.- 3. 6-DoF Haptic Simulation of Geometric Fine Features.- 4. 6-DoF Haptic Simulation of Deformable Objects.- 5. Evaluation of Haptic Rendering Methods.- 6. Application: A Dental Simulator.- 7. Conclusions and Future Work.

Info autore

Dangxiao WANG is an Associate Professor at the State Key Laboratory of Virtual Reality Technology and System in Beihang University, China. His research interests include haptic rendering, medical robotic system and Neurohaptics. He is a senior member of IEEE. He has been the Chair of Executive Committee of IEEE Technical Committee on Haptics (IEEE TCH) from 2014. He served as the Vice Chair for Publications of IEEE TCH from 2011 to 2014.
Jing XIAO is a Professor of Computer Science, College of Computing and Informatics, University of North Carolina at Charlotte, USA. Her research interests include robotic manipulation and assembly, haptic rendering, and motion planning. She is a Fellow of IEEE.
Yuru ZHANG is a Professor and is the Vice Director of the State Key Laboratory of Virtual Reality Technology and System in Beihang University, China. She is also leading the Division of Human-Machine Interaction at the State Key Laboratory. Her research interests include haptic human-machine interface, medical robotic system, robotic dexterous manipulation, and virtual prototyping. She is a senior member of IEEE.

Riassunto

This book introduces the latest progress in six degrees of freedom (6-DoF) haptic rendering with the focus on a new approach for simulating force/torque feedback in performing tasks that require dexterous manipulation skills. One of the major challenges in 6-DoF haptic rendering is to resolve the conflict between high speed and high fidelity requirements, especially in simulating a tool interacting with both rigid and deformable objects in a narrow space and with fine features. The book presents a configuration-based optimization approach to tackle this challenge. Addressing a key issue in many VR-based simulation systems, the book will be of particular interest to researchers and professionals in the areas of surgical simulation, rehabilitation, virtual assembly, and inspection and maintenance.

Dettagli sul prodotto

Autori Dangxia Wang, Dangxiao Wang, Jin Xiao, Jing Xiao, Yuru Zhang
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2016
 
EAN 9783662525203
ISBN 978-3-662-52520-3
Pagine 162
Dimensioni 155 mm x 8 mm x 235 mm
Peso 309 g
Illustrazioni XII, 162 p. 127 illus., 108 illus. in color.
Categorie Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Sistemi operativi, interfacce

B, Robotics, Automation, computer science, Control, Robotics, Automation, Computer simulation, Computer modelling & simulation, Simulation and Modeling, Robotics and Automation, Automatic control engineering, User Interfaces and Human Computer Interaction, User interfaces (Computer systems), Computer modelling and simulation

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.