Fr. 47.90

MOR applications

Inglese · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Model order reduction is a technique for reducing the computational complexity of mathematical models in numerical simulations. In recent years, model reduction has become an omnipresent tool in a variety of application regions and, consequently, a research emphasis for many mathematicians and engineers. In the present book mixed methods are employed for order reduction. The denominator polynomial of reduced model is obtained by using modified pole clustering, stability equation method and Routh method. The numerator is obtained by factor division method and Pade approximation. Five Mixed methods Pade approximation-Modified pole clustering, Factor division method, Stability equation method, Pade approximation, Routh method, Factor division method-Routh method and Pade approximation-Stability equation method have been used for the reduction of 8th order Higher order system to second order reduced models.

Info autore

P Verma is an active researcher in the area of Control system. Her area of expertise is MOR and its techniques. She has done B.Tech. and presently pursuing M.Tech. in control system.Dr. P K Juneja, PhD, IITR, is Professor at GEU Dehradun.Mr. M Chaturvedi, M.Tech., control systems is Assistant Professor at GEU Dehradun.

Dettagli sul prodotto

Autori M Chaturvedi, M. Chaturvedi, P Juneja, P K Juneja, Verma, P Verma, P. Verma
Editore LAP Lambert Academic Publishing
 
Lingue Inglese
Formato Tascabile
Pubblicazione 16.08.2016
 
EAN 9783659927195
ISBN 978-3-659-92719-5
Pagine 60
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.