Fr. 47.90

Mathematisches Problemlösen und Beweisen - Eine Entdeckungsreise in die Mathematik

Tedesco · Tascabile

Spedizione di solito entro 4 a 7 giorni lavorativi

Descrizione

Ulteriori informazioni

Standen Sie schon einmal vor einem mathematischen Problem oder einer kniffeligen Knobelaufgabe und hatten keine Idee für einen Lösungsansatz? Ist Kreativität erlernbar? Dieses Buch vermittelt Ihnen systematisch Problemlösestrategien, die Grundlagen der Logik und die wichtigsten Beweistechniken. Der Autor bearbeitet Schritt für Schritt ausgewählte Probleme, die mit dem Schulwissen der Mittelstufe zu verstehen sind, und lädt Sie dabei zum Mitmachen ein. Bei der Lektüre des Buches werden Sie Ihre Kreativität schulen und sich universelle Prinzipien der Wissenschaft Mathematik aneignen, die weit über die gestellten Aufgaben hinausreichen und Ihnen den Weg zur höheren Mathematik ebnen. Sie lernen, selbständig mathematische Probleme zu lösen, den Sinn von Beweisen zu verstehen und selbst Beweise zu finden.
Das Buch basiert auf einer einsemestrigen Vorlesung, die der Autor an der Universität Oldenburg mit großem Erfolg gehalten hat. Es eignet sich zum Selbststudium, als Grundlagefür einführende Lehrveranstaltungen im Mathematikstudium und für problemlöseorientierten Unterricht in der Schule.
Die 2. Auflage enthält zahlreiche neue Aufgaben, und der Text wurde noch einmal überarbeitet.

Sommario

Erste mathematische Erkundungen.- Die Idee der Rekursion.- Vollständige Induktion.- Graphen.- Abzählen.- Allgemeine Strategien.- Logik und Beweise.- Elementare Zahlentheorie.- Das Schubfachprinzip.- Das Extremalprinzip.-Das Invarianzprinzip.- Ein Überblick über Problemlösestrategien. - Grundbegriffe zu Mengen und Abbildungen.- Übungsaufgaben zu jedem Kapitel.- Hinweise zu den Aufgaben.

Info autore

Prof. Dr. Daniel Grieser lehrt und forscht am Institut für Mathematik der Carl von Ossietzky Universität Oldenburg.

Riassunto

Standen Sie schon einmal vor einem mathematischen Problem oder einer kniffeligen Knobelaufgabe und hatten keine Idee für einen Lösungsansatz? Ist Kreativität erlernbar? Dieses Buch vermittelt Ihnen systematisch Problemlösestrategien, die Grundlagen der Logik und die wichtigsten Beweistechniken. Der Autor bearbeitet Schritt für Schritt ausgewählte Probleme, die mit dem Schulwissen der Mittelstufe zu verstehen sind, und lädt Sie dabei zum Mitmachen ein. Bei der Lektüre des Buches werden Sie Ihre Kreativität schulen und sich universelle Prinzipien der Wissenschaft Mathematik aneignen, die weit über die gestellten Aufgaben hinausreichen und Ihnen den Weg zur höheren Mathematik ebnen. Sie lernen, selbständig mathematische Probleme zu lösen, den Sinn von Beweisen zu verstehen und selbst Beweise zu finden.
Das Buch basiert auf einer einsemestrigen Vorlesung, die der Autor an der Universität Oldenburg mit großem Erfolg gehalten hat. Es eignet sich zum Selbststudium, als Grundlagefür einführende Lehrveranstaltungen im Mathematikstudium und für problemlöseorientierten Unterricht in der Schule.
Die 2. Auflage enthält zahlreiche neue Aufgaben, und der Text wurde noch einmal überarbeitet.

Testo aggiuntivo

“… Probleme, Strategien und Lösungen sind gut verständlich geschrieben, und wer dieses Buch durchgearbeitet hat, wird kein Problem mehr mit dem Umstand haben, dass im Mathematikstudium dem Beweis eine so prominente Rolle zugewiesen wird. Ich würde es interessierten Oberstufenschülern, die darüber nachdenkenMathematik zu studieren, oder AG-Leitern, die ihren Schützlingen die Natur der Mathematik nahebringen möchten, nachdrücklich empfehlen …” (Joachim Hilgert, in: Mathematische Semesterberichte, Jg. 67, 2020)

Relazione

"... Probleme, Strategien und Lösungen sind gut verständlich geschrieben, und wer dieses Buch durchgearbeitet hat, wird kein Problem mehr mit dem Umstand haben, dass im Mathematikstudium dem Beweis eine so prominente Rolle zugewiesen wird. Ich würde es interessierten Oberstufenschülern, die darüber nachdenkenMathematik zu studieren, oder AG-Leitern, die ihren Schützlingen die Natur der Mathematik nahebringen möchten, nachdrücklich empfehlen ..." (Joachim Hilgert, in: Mathematische Semesterberichte, Jg. 67, 2020)

Dettagli sul prodotto

Autori Daniel Grieser, Daniel (Prof. Dr.) Grieser
Editore Springer, Berlin
 
Lingue Tedesco
Formato Tascabile
Pubblicazione 16.12.2016
 
EAN 9783658147648
ISBN 978-3-658-14764-8
Pagine 321
Dimensioni 169 mm x 17 mm x 239 mm
Peso 633 g
Illustrazioni XIII, 321 S. 70 Abb., 14 Abb. in Farbe.
Serie Springer-Lehrbuch
Springer Studium Mathematik - Bachelor
Springer-Lehrbuch
Springer Studium Mathematik - Bachelor
Springer Studium Mathematik (Bachelor)
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica

A, Fachspezifischer Unterricht, Mathematics, Mathematics and Statistics, Mathematics, general, Teaching of a specific subject, Mathematics—Study and teaching, Mathematics Education

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.