Fr. 69.00

Advanced H Control - Towards Nonsmooth Theory and Applications

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H approach in the nonsmooth setting. Similar to the standard nonlinear H approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements.
Advanced H Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton-Jacobi-Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is extended to infinite-dimensional setting, involving time-delay and distributed parameter systems. To help illustrate this synthesis, the book focuses on electromechanical applications with nonsmooth phenomena caused by dry friction, backlash, and sampled-data measurements. Special attention is devoted to implementation issues.
Requiring familiarity with nonlinear systems theory, this book will be accessible to g
raduate students interested in systems analysis and design, and is a welcome addition to the literature for researchers and practitioners in these areas.

Sommario

Part I Introduction.- 1 Linear H1 control of autonomous systems.- 2 LMI approach in infinite dimensional setting.- 3 Linear H1 control of time-varying systems.- 4 Nonlinear H1 control.- Part II Nonsmooth H1 Control.- 5 Elements of nonsmooth analysis.- 6 Synthesis of nonsmooth systems.- 7 LMI-based H1 boundary control of nonsmooth parabolic and hyperbolic systems.- Part III Benchmark Applications.- 8 Advanced H1 synthesis of fully actuated robot manipulators with frictional joints.- 9 Nonsmooth H1 synthesis in the presence of backlash.- 10 H1 generation of periodic motion.- 11 LMI-based H1 synthesis of the current profile in tokamak plasmas.- References.- Index.

Riassunto

This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H approach in the nonsmooth setting. Similar to the standard nonlinear Happroach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements.
Advanced H Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton–Jacobi–Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is extended to infinite-dimensional setting, involving time-delay and distributed parameter systems. To help illustrate this synthesis, the book focuses on electromechanical applications with nonsmooth phenomena caused by dry friction, backlash, and sampled-data measurements. Special attention is devoted to implementation issues.
Requiring familiarity with nonlinear systems theory, this book will be accessible to g
raduate students interested in systems analysis and design, and is a welcome addition to the literature for researchers and practitioners in these areas.

Testo aggiuntivo

“The present book is a research monograph. … it is
self-contained, and so the reader who takes the effort to study the book in
detail, learns how to design robust controllers for a very general class of
systems, such as those described by nonsmooth nonlinear models and those
described by partial differential equations.” (Hans Zwart, zbMATH 1328.93005,
2016)
“This monograph addresses the Hcontrol problem for a wide class of systems described by ‘finite-/infinite-dimensional, linear/nonlinear, time-invariant/-varying, without/with delay’ equations. … The proposed method allows one to develop powerful algorithms for the Hdesign of nonsmooth systems.” (Hideki Sano, Mathematical Reviews, June, 2015)

Relazione

"The present book is a research monograph. ... it is self-contained, and so the reader who takes the effort to study the book in detail, learns how to design robust controllers for a very general class of systems, such as those described by nonsmooth nonlinear models and those described by partial differential equations." (Hans Zwart, zbMATH 1328.93005, 2016)
"This monograph addresses the H control problem for a wide class of systems described by 'finite-/infinite-dimensional, linear/nonlinear, time-invariant/-varying, without/with delay' equations. ... The proposed method allows one to develop powerful algorithms for the H design of nonsmooth systems." (Hideki Sano, Mathematical Reviews, June, 2015)

Dettagli sul prodotto

Autori Luis T Aguilar, Luis T. Aguilar, Yury Orlov, Yury V Orlov, Yury V. Orlov
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 31.08.2016
 
EAN 9781493944422
ISBN 978-1-4939-4442-2
Pagine 218
Dimensioni 185 mm x 238 mm x 13 mm
Peso 359 g
Illustrazioni XI, 218 p. 43 illus., 12 illus. in color.
Serie Systems & Control: Foundations & Applications
Systems & Control: Foundations & Applications
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.