Fr. 169.00

Functional Analysis and Applied Optimization in Banach Spaces - Applications to Non-Convex Variational Models

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.

Sommario

1. Topological Vector Spaces.- 2. The Hahn-Bananch Theorems and Weak Topologies.- 3. Topics on Linear Operators.- 4. Basic Results on Measure and Integration.- 5. The Lebesgue Measure in Rn.- 6. Other Topics in Measure and Integration.- 7. Distributions.- 8. The Lebesque and Sobolev Spaces.- 9. Basic Concepts on the Calculus of Variations.- 10. Basic Concepts on Convex Analysis.- 11. Constrained Variational Analysis.- 12. Duality Applied to Elasticity.- 13. Duality Applied to a Plate Model.- 14. About Ginzburg-Landau Type Equations: The Simpler Real Case.- 15. Full Complex Ginzburg-Landau System.- 16. More on Duality and Computation in the Ginzburg-Landau System.- 17. On Duality Principles for Scalar and Vectorial Multi-Well Variational Problems.- 18. More on Duality Principles for Multi-Well Problems.- 19. Duality and Computation for Quantum Mechanics Models.- 20. Duality Applied to the Optimal Design in Elasticity.- 21. Duality Applied to Micro-magnetism.- 22. The Generalized Method of Lines Applied to Fluid Mechanics.- 23. Duality Applied to the Optimal Control and Optimal Design of a Beam Model.

Riassunto

This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.

Testo aggiuntivo

“The aim of the present book is to consider a variety of problems arising in applications in relation with non-convex variational models. … The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics, and engineering.” (Ján Lovíšek, Mathematical Reviews, August, 2015)

Relazione

"The aim of the present book is to consider a variety of problems arising in applications in relation with non-convex variational models. ... The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics, and engineering." (Ján Lovísek, Mathematical Reviews, August, 2015)

Dettagli sul prodotto

Autori Fabio Botelho
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2016
 
EAN 9783319382067
ISBN 978-3-31-938206-7
Pagine 560
Dimensioni 173 mm x 236 mm x 32 mm
Peso 891 g
Illustrazioni XVIII, 560 p. 57 illus., 51 illus. in color.
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

B, Numerische Mathematik, Mathematics and Statistics, Functional Analysis, Real Functions, Numerical analysis, Functions of real variables, Functional analysis & transforms, Fourier Analysis, Real analysis, real variables

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.