Fr. 66.00

Practical Machine Learning with H20

Inglese · Tascabile

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni










Machine learning has finally come of age. With H2O software, you can perform machine learning and data analysis using a simple open source framework that's easy to use, has a wide range of OS and language support, and scales for big data. This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.
If you're familiar with R or Python, know a bit of statistics, and have some experience manipulating data, author Darren Cook will take you through H2O basics and help you conduct machine-learning experiments on different sample data sets. You'll explore several modern machine-learning techniques such as deep learning, random forests, unsupervised learning, and ensemble learning.
  • Learn how to import, manipulate, and export data with H2O
  • Explore key machine-learning concepts, such as cross-validation and validation data sets
  • Work with three diverse data sets, including a regression, a multinomial classification, and a binomial classification
  • Use H2O to analyze each sample data set with four supervised machine-learning algorithms
  • Understand how cluster analysis and other unsupervised machine-learning algorithms work


Info autore










Darren Cook has over 20 years of experience as a software developer, data analyst, and technical director, working on everything from financial trading systems to NLP, data visualization tools, and PR websites for some of the world's largest brands. He is skilled in a wide range of computer languages, including R, C++, PHP, JavaScript, and Python. He works at QQ Trend, a financial data analysis and data products company.


Riassunto

This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.

Dettagli sul prodotto

Autori Darren Cook, Cook Darren
Editore O'Reilly
 
Lingue Inglese
Formato Tascabile
Pubblicazione 28.02.2017
 
EAN 9781491964606
ISBN 978-1-4919-6460-6
Dimensioni 175 mm x 232 mm x 27 mm
Peso 518 g
Categorie Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica

machine learning, COMPUTERS / Data Science / Machine Learning, COMPUTERS / Data Science / Data Visualization, COMPUTERS / Database Administration & Management, Data capture and analysis, Data Capture & Analysis

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.