Fr. 168.00

Ordered Regression Models - Parallel, Partial, and Non-Parallel Alternatives

Inglese · Copertina rigida

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni

Zusatztext "The book is intended to be a starter for somebody not familiar with the subject. It was written primarily for social scientists (published in the CRC Statistics in the Social and Behavioral Sciences Series) and as such, it can be read easily without any statistical pre-requisites beyond very basic Statistics and some working knowledge of logistic regression. Nevertheless, the book is certainly useful far beyond the social sciences themselves – in particular for epidemiologists, medical researchers and also statisticians of students of Statistics/Biostatistics who want to learn basic facts about ordered regression and perhaps motivate further study of this interesting field. The style of exposition is quite informal and intuitive."~International Society for Clinical Biostatistics Informationen zum Autor Andrew S. Fullerton is an associate professor of sociology at Oklahoma State University. His primary research interests include work and occupations, social stratification, and quantitative methods. His work has been published in journals such as Social Forces , Social Problems , Sociological Methods & Research , Public Opinion Quarterly , and Social Science Research . Jun Xu is an associate professor of sociology at Ball State University. His primary research interests include Asia and Asian Americans, social epidemiology, and statistical modeling and programing. His work has been published in journals such as Social Forces , Social Science & Medicine , Sociological Methods & Research, Social Science Research , and The Stata Journal . Klappentext This book provides comprehensive coverage of the three major classes of ordered regression models (cumulative, stage, and adjacent) as well as variations based on the application of the parallel regression assumption. It explores the advantages of ordered regression models over linear and binary regression models for the analysis of ordinal outcomes. The book also highlights several ways to interpret and present the results by using empirical examples from the social and behavioral sciences. Includes detailed examples and code online Zusammenfassung Estimate and Interpret Results from Ordered Regression Models Ordered Regression Models: Parallel, Partial, and Non-Parallel Alternatives presents regression models for ordinal outcomes, which are variables that have ordered categories but unknown spacing between the categories. The book provides comprehensive coverage of the three major classes of ordered regression models (cumulative, stage, and adjacent) as well as variations based on the application of the parallel regression assumption. The authors first introduce the three "parallel" ordered regression models before covering unconstrained partial, constrained partial, and nonparallel models. They then review existing tests for the parallel regression assumption, propose new variations of several tests, and discuss important practical concerns related to tests of the parallel regression assumption. The book also describes extensions of ordered regression models, including heterogeneous choice models, multilevel ordered models, and the Bayesian approach to ordered regression models. Some chapters include brief examples using Stata and R. This book offers a conceptual framework for understanding ordered regression models based on the probability of interest and the application of the parallel regression assumption. It demonstrates the usefulness of numerous modeling alternatives, showing you how to select the most appropriate model given the type of ordinal outcome and restrictiveness of the parallel assumption for each variable. Web Resource More detailed examples are available on a supplementary website. The site also contains JAGS, R, and Stata codes to estima...

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.