Fr. 92.00

SQA Defect Prediction: An SVM Based In-Appendage Software Log Analysis

Inglese · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Software Quality Assurance is an important factor in IT industry.The work reported in this thesis arose as part of an idea whose goal is to develop an adaptive SQA by defect prediction.In this regard we use SVM machine learning approach to predict the degree of fault proneness of software modules. The machine learning technique for defect forecasting and handling SQA called appendage log training and analysis can be referred as ALTA.The proposed defect forecasting of in-appendage software development log works is to deal the forecasted defects accurately and spontaneously while developing the software.In defect prediction process we opt machine learning technique called least square support vector machines in short LSSVM. The defect prediction stage of the ALTA targets the development logs available as input to train the LSSVM for better predictions.The future extraction process that is part of SVM training Process can be done with support of mathematical model called Intensified worst particle based Quantum Particle Swarm Optimization(QPSO).The QPSO algorithm and LSSVM,works as an intelligent system to predict defects to improve the software quality.

Info autore










N.RAJASEKHAR REDDY is Professor in the Department of Computer Science and Engineering at visvesvaraya Technological University.His research in the areas of SoftwareEngineering and Data Mining Systems.He was published 15 International Journals include IEEE,ACM and attended 10 international Conferences and several NationalConferences across the World

Dettagli sul prodotto

Autori Nandireddy Rajasekhar Reddy
Editore LAP Lambert Academic Publishing
 
Lingue Inglese
Formato Tascabile
Pubblicazione 30.09.2015
 
EAN 9783659581908
ISBN 978-3-659-58190-8
Pagine 176
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.