Fr. 64.00

EQUIVARIANT SYMPLECTIC HODGE THEORY AND STRONG LEFSCHETZ MANIFOLDS - A study of Hamiltonian symplectic geometry from a Hodge theoretic point of view

Inglese · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Consider the Hamiltonian action of a compact Lie group on a symplectic manifold which has the strong Lefschetz property. We first establish an equivariant version of the Merkulov-Guillemin d -lemma, and an improved version of the Kirwan-Ginzburg equivariant formality theorem, which says that every cohomology class has a canonical equivariant extension. We then proceed to extend the equivariant d -lemma to equivariant differential forms with generalized coefficients. Finally we investigate the subtle differences between an equivariant Kaehler manifold and a Hamiltonian symplectic manifold with the strong Lefscehtz property. Among other things, we construct six-dimensional compact non-Kaehler Hamiltonian circle manifolds which each satisfy the Hard Lefschetz property, but nevertheless each have a symplectic quotient which does not satisfy the strong Lefschetz property. As an aside we prove that the strong Lefschetz property, unlike that of equivariant Kaehler condition, does not guarantee the Duistermaat-Heckman function to be log-concave.

Info autore










Yi Lin received his Ph.D degree in Mathematics in 2004 from Cornell University. He had a visiting assistant professor and a postdoctoral position with the University of Illinois at Urbana-Champaign and the University of Toronto respectively. Since August 2008, he has been an assistant professor at Georgia Southern University.

Dettagli sul prodotto

Autori Yi Lin
Editore LAP Lambert Academic Publishing
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2009
 
EAN 9783838318356
ISBN 978-3-8383-1835-6
Pagine 88
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.