Fr. 79.00

Gauging affectivity in social networks - A Sentiment Analysis module for evaluating continuous student opinions

Inglese, Tedesco · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Sentiment analysis is a new field of research that is getting very popular due to the demand to understand what are people's thoughts or opinions in the internet. There are major challenges to understand natural language and how to classify opinions with high accuracy. To classify student opinions a system has been created that approaches the problem in two ways, using fixed-rules and using machine learning algorithms. The classifier that are created are able to classify student opinions as positive and negative. The dataset that created contains more than 250 student opinions that were gathered and processed. Evaluation of various algorithms that were used to classify opinions is performed in order to learn what will suit best the case with the current data-set. The system uses excessively dictionaries with positive and negative words when fixed-rules approach is used, and the data-set's are used for other machine learning algorithms. Input is processed in lexical and syntactical level before it is used to train the model and to be classified. The system that we chose to receive student opinions and to use the classifiers is Effectinet, developed by a student at CITY College.

Dettagli sul prodotto

Autori Lum Zhaveli
Editore LAP Lambert Academic Publishing
 
Lingue Inglese, Tedesco
Formato Tascabile
Pubblicazione 01.01.2013
 
EAN 9783659465406
ISBN 978-3-659-46540-6
Pagine 136
Categorie Guide e manuali
Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.