Fr. 48.90

Data Analytics with Hadoop

Inglese · Tascabile

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni










Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job. Instead of deployment, operations, or software development usually associated with distributed computing, you'll focus on particular analyses you can build, the data warehousing techniques that Hadoop provides, and higher order data workflows this framework can produce.
Data scientists and analysts will learn how to perform a wide range of techniques, from writing MapReduce and Spark applications with Python to using advanced modeling and data management with Spark MLlib, Hive, and HBase. You'll also learn about the analytical processes and data systems available to build and empower data products that can handle—and actually require—huge amounts of data.
  • Understand core concepts behind Hadoop and cluster computing
  • Use design patterns and parallel analytical algorithms to create distributed data analysis jobs
  • Learn about data management, mining, and warehousing in a distributed context using Apache Hive and HBase
  • Use Sqoop and Apache Flume to ingest data from relational databases
  • Program complex Hadoop and Spark applications with Apache Pig and Spark DataFrames
  • Perform machine learning techniques such as classification, clustering, and collaborative filtering with Spark's MLlib


Info autore










Benjamin Bengfort is a Data Scientist who lives inside the beltway but ignores politics (the normal business of DC) favoring technology instead. He is currently working to finish his PhD at the University of Maryland where he studies machine learning and distributed computing. His lab does have robots (though this field of study is not one he favors) and, much to his chagrin, they seem to constantly arm said robots with knives and tools; presumably to pursue culinary accolades. Having seen a robot attempt to slice a tomato, Benjamin prefers his own adventures in the kitchen where he specializes in fusion French and Guyanese cuisine as well as BBQ of all types. A professional programmer by trade, a Data Scientist by vocation, Benjamin's writing pursues a diverse range of subjects from Natural Language Processing, to Data Science with Python to analytics with Hadoop and Spark.
Jenny Kim is an experienced big data engineer who works in both commercial software efforts as well as in academia. She has significant experience in working with large scale data, machine learning, and Hadoop implementations in production and research environments. Jenny (with Benjamin Bengfort) previously built a large scale recommender system that used a web crawler to gather ontological information about apparel products and produce recommendations from transactions. Currently, she is working with the Hue team at Cloudera, to help build intuitive interfaces for analyzing big data with Hadoop.


Riassunto

Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job.

Dettagli sul prodotto

Autori Benjamin Bengfort, Bengfort Benjamin, Jenny Kim
Editore O'Reilly
 
Lingue Inglese
Formato Tascabile
Pubblicazione 31.07.2016
 
EAN 9781491913703
ISBN 978-1-4919-1370-3
Dimensioni 177 mm x 251 mm x 16 mm
Peso 468 g
Categorie Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica

COMPUTERS / Data Science / Data Visualization, COMPUTERS / Database Administration & Management, Data capture and analysis, Data Capture & Analysis

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.