Fr. 147.00

Local Homotopy Theory

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory.
Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic K-theory.
Assuming basic knowledge of algebraic geometry and homotopy theory, Local Homotopy Theory will appeal to researchers and advanced graduate students seeking to understand and advance the applications of homotopy theory in multiple areas of mathematics and the mathematical sciences.

Sommario

Preface.- 1 Introduction.- Part I Preliminaries.- 2 Homotopy theory of simplicial sets.- 3 Some topos theory.- Part II Simplicial presheaves and simplicial sheaves.- 4 Local weak equivalences.- 5 Local model structures.- 6 Cocycles.- 7 Localization theories.- Part III Sheaf cohomology theory.- 8 Homology sheaves and cohomology groups.- 9 Non-abelian cohomology.- Part IV Stable homotopy theory.- 10 Spectra and T-spectra.- 11 Symmetric T-spectra.- References.- Index.

Info autore










J. F. Jardine is Canada Research Chair and Professor of Mathematics at the University of Western Ontario. He is the author of Generalized Etale Cohomology Theories and Simplicial Homotopy Theory (with P. Goerss).


Riassunto

This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory.
Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic K-theory.
Assuming basic knowledge of algebraic geometry and homotopy theory, Local Homotopy Theory will appeal to researchers and advanced graduate students seeking to understand and advance the applications of homotopy theory in multiple areas of mathematics and the mathematical sciences.

Dettagli sul prodotto

Autori John Jardine, John F Jardine, John F. Jardine, John Frederick Jardine
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.01.2015
 
EAN 9781493922994
ISBN 978-1-4939-2299-4
Pagine 508
Dimensioni 164 mm x 32 mm x 243 mm
Peso 950 g
Illustrazioni IX, 508 p. 514 illus.
Serie Springer Monographs in Mathematics
Springer Monographs in Mathematics
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Algebra, B, Mathematics and Statistics, Algebraic Topology, Category theory (Mathematics), Category Theory, Homological Algebra, Homological algebra, K-Theory

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.