Fr. 69.00

Modern Methodology and Applications in Spatial-Temporal Modeling

Inglese · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet processes which recently have been developed in non-parametric Bayesian literature. The final chapter discusses aspects of dependence modeling, primarily focusing on the role of extreme tail-dependence modeling, copulas, and their role in wireless communications system models.

Sommario

1 Nonparametric Bayesian Inference with Kernel Mean Embedding (Kenji Fukumizu).- 2 How to Utilise Sensor Network Data to Efficiently Perform Model Calibration and Spatial Field Reconstruction (Gareth W. Peters, Ido Nevat and Tomoko Matsui).- 3 Speech and Music Emotion Recognition using Gaussian Processes (Konstantin Markov and Tomoko Matsui).- 4 Topic Modeling for Speech and Language Processing (Jen-Tzung Chien).

Riassunto


This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet processes which recently have been developed in non-parametric Bayesian literature. The final chapter discusses aspects of dependence modeling, primarily focusing on the role of extreme tail-dependence modeling, copulas, and their role in wireless communications system models.

Dettagli sul prodotto

Con la collaborazione di MATSUI (Editore), Matsui (Editore), Tomoko Matsui (Editore), Gareth W. Peters (Editore), Gareth William Peters (Editore), Garet William Peters (Editore), Gareth William Peters (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2016
 
EAN 9784431553380
ISBN 978-4-431-55338-0
Pagine 111
Dimensioni 167 mm x 5 mm x 234 mm
Peso 230 g
Illustrazioni XV, 111 p. 17 illus., 4 illus. in color.
Serie SpringerBriefs in Statistics
SpringerBriefs in Statistics / JSS Research Series in Statistics
JSS Research Series in Statistics
SpringerBriefs in Statistics
JSS Research Series in Statistics
Springerbriefs in Statistics /
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Teoria delle probabilità, stocastica, statistica matematica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.