Fr. 102.00

Machine Learning for Corporate Failure Prediction - An Empirical Study of South African Companies

Inglese · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Corporate failure is an essential component of an efficient market economy. It allows for the recycling of financial, human and physical resources into more productive organisations. However, many stakeholders, have an interest in the financial health of a firm, as the failure of the corporation can have a significant impact on the costs to all parties. Machine learning can broadly be defined as the field of study that concentrates on algorithms that have the ability to learn. This is in direct contrast to expert systems that are automated with a set of predetermined rules for the classification of the independent variable. Machine learning techniques are adept at finding potential solutions to highly complex problems. In this research, support vector machines and genetic algorithms were applied to the problem of corporate failure prediction (a complex, non-linear problem) with great effect. The book ends by showing, mathematically, the relationship between support vector machines and kernel ridge regression.

Info autore










Saul is a qualified Chartered Accountant, Chartered Financial Analyst and has completed his Masters in intelligent pattern recognition techniques. He would prefer to be on a deserted island than at a computer.

Dettagli sul prodotto

Autori Saul Kornik
Editore LAP Lambert Academic Publishing
 
Lingue Inglese
Formato Tascabile
Pubblicazione 27.09.2012
 
EAN 9783847379652
ISBN 978-3-8473-7965-2
Pagine 364
Categoria Guide e manuali > Diritto, professione, finanze > Denaro, banca, borsa

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.