Fr. 69.00

Spectral Theory

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni










The Asymptotic Behavior of the Solutions of the Wave Equation Concentrated near the Axis of a Two-Dimensional Waveguide in an Inhomogeneous Medium.- � A Waveguide in an Inhomogeneous Medium.- � The Construction of the Solutions of the Wave Equation Concentrated near the Waveguide Axis.- � The Asymptotic Behavior of the Eigenfunctions and Eigenvalues of the Boundary Problem for the Waveguide.- Literature Cited.- Perturbations of the Spectrum of the Schroedinger Operator with a Complex Periodic Potential.- � Preliminary Information.- � Investigations of the Perturbed Operator.- � Investigation of the Spectrum under the Condition $$\int{\left \text{q}\left( \text{x} \right) \right}{{\text{e}}^{\text{ }\!\!\delta\!\!\text{ }\left x \right}}dx$$ < ?.- � Proof That There Are No Eigenvalues on the Continuous Spectrum.- Literature Cited.- The Discrete Spectra of the Dirac and Pauli Operators.- � Auxiliary Information.- � The Discrete Spectrum of the Dirac Operator in the Case of Spherical Symmetry.- � The Discrete Spectrum of the Dirac Operator in the Three-Dimensional Case.- � The Discrete Spectrum of the Pauli Operator.- Literature Cited.- The Nonself-Adjoint Schroedinger Operator. III.- � Auxiliary Information.- � The Operator with Potential q(x) ? S?.- � The Operator with Potential q(x) ? Sn, n < ?.- Literature Cited.- The Singular Numbers of the Sum of Completely Continuous Operators.- Literature Cited.- Double-Integral Operators in the Ring R^.- Literature Cited.- Correction to 縏he Inverse Problem in the Theory of Seismic Wave Propagation�.

Sommario

The Asymptotic Behavior of the Solutions of the Wave Equation Concentrated near the Axis of a Two-Dimensional Waveguide in an Inhomogeneous Medium.-
1. A Waveguide in an Inhomogeneous Medium.-
2. The Construction of the Solutions of the Wave Equation Concentrated near the Waveguide Axis.-
3. The Asymptotic Behavior of the Eigenfunctions and Eigenvalues of the Boundary Problem for the Waveguide.- Literature Cited.- Perturbations of the Spectrum of the Schroedinger Operator with a Complex Periodic Potential.-
1. Preliminary Information.-
2. Investigations of the Perturbed Operator.-
3. Investigation of the Spectrum under the Condition $$int{left| text{q}left( text{x} right) right|}{{text{e}}^{text{ }!!delta!!text{ }left| x right|}}dx$$ < ?.-
4. Proof That There Are No Eigenvalues on the Continuous Spectrum.- Literature Cited.- The Discrete Spectra of the Dirac and Pauli Operators.-
1. Auxiliary Information.-
2. The Discrete Spectrum of the Dirac Operator in the Case of Spherical Symmetry.-
3. The Discrete Spectrum of the Dirac Operator in the Three-Dimensional Case.-
4. The Discrete Spectrum of the Pauli Operator.- Literature Cited.- The Nonself-Adjoint Schroedinger Operator. III.-
1. Auxiliary Information.-
2. The Operator with Potential q(x) ? S?.-
3. The Operator with Potential q(x) ? Sn, n < ?.- Literature Cited.- The Singular Numbers of the Sum of Completely Continuous Operators.- Literature Cited.- Double-Integral Operators in the Ring R^.- Literature Cited.- Correction to "The Inverse Problem in the Theory of Seismic Wave Propagation".

Dettagli sul prodotto

Autori M Sh Birman, M. Sh Birman, M. Sh. Birman
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2012
 
EAN 9781468475913
ISBN 978-1-4684-7591-3
Pagine 93
Dimensioni 211 mm x 279 mm x 4 mm
Peso 286 g
Illustrazioni VI, 93 p.
Serie Topics in Mathematical Physics
Topics in Mathematical Physics
Categoria Scienze naturali, medicina, informatica, tecnica > Fisica, astronomia > Fisica teorica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.