Fr. 69.00

Robust Speaker Recognition in Noisy Environments

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book discusses speaker recognition methods to deal with realistic variable noisy environments. The text covers authentication systems for; robust noisy background environments, functions in real time and incorporated in mobile devices. The book focuses on different approaches to enhance the accuracy of speaker recognition in presence of varying background environments. The authors examine: (a) Feature compensation using multiple background models, (b) Feature mapping using data-driven stochastic models, (c) Design of super vector- based GMM-SVM framework for robust speaker recognition, (d) Total variability modeling (i-vectors) in a discriminative framework and (e) Boosting method to fuse evidences from multiple SVM models.

Sommario

Robust Speaker Verification - A Review.- Speaker Verification in Noisy Environments using Gaussian Mixture Models.- Stochastic Feature Compensation for Robust Speaker Verification.- Robust Speaker Modeling for Speaker Verification in Noisy Environments.

Info autore

K. Sreenivasa Rao, Associate Professor, School of Information Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur). Sourjya Sarkar is a graduate student at the Indian Institute of Technology Kharagpur.

Riassunto

This book discusses speaker recognition methods to deal with realistic variable noisy environments. The text covers authentication systems for; robust noisy background environments, functions in real time and incorporated in mobile devices. The book focuses on different approaches to enhance the accuracy of speaker recognition in presence of varying background environments. The authors examine: (a) Feature compensation using multiple background models, (b) Feature mapping using data-driven stochastic models, (c) Design of super vector- based GMM-SVM framework for robust speaker recognition, (d) Total variability modeling (i-vectors) in a discriminative framework and (e) Boosting method to fuse evidences from multiple SVM models.

Dettagli sul prodotto

Autori K Sreenivas Rao, K Sreenivasa Rao, K. Sreenivasa Rao, Sourjya Sarkar
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 31.07.2014
 
EAN 9783319071299
ISBN 978-3-31-907129-9
Pagine 139
Dimensioni 157 mm x 234 mm x 6 mm
Peso 270 g
Illustrazioni XII, 139 p. 31 illus., 25 illus. in color.
Serie SpringerBriefs in Speech Technology
SpringerBriefs in Electrical and Computer Engineering
SpringerBriefs in Electrical and Computer Engineering / SpringerBriefs in Speech Technology
SpringerBriefs in Electrical and Computer Engineering
SpringerBriefs in Speech Technology
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Elettronica, elettrotecnica, telecomunicazioni

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.