Condividi
Fr. 116.00
Corinn Berzin, Corinne Berzin, Alai Latour, Alain Latour, José R León, José R. León
Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion
Inglese · Tascabile
Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)
Descrizione
This book is devoted to a number of stochastic models that display scale invariance. It primarily focuses on three issues: probabilistic properties, statistical estimation and simulation of the processes considered.
It will be of interest to probability specialists, who will find here an uncomplicated presentation of statistics tools and to those statisticians who wants to tackle the most recent theories in probability in order to develop Central Limit Theorems in this context; both groups will also benefit from the section on simulation. Algorithms are described in great detail, with a focus on procedures that is not usually found in mathematical treatises. The models studied are fractional Brownian motions and processes that derive from them through stochastic differential equations.
Concerning the proofs of the limit theorems, the "Fourth Moment Theorem" is systematically used, as it produces rapid and helpful proofs that can serve as models for the future. Readers will also find elegant and new proofs for almost sure convergence.
The use of diffusion models driven by fractional noise has been popular for more than two decades now. This popularity is due both to the mathematics itself and to its fields of application. With regard to the latter, fractional models are useful for modeling real-life events such as value assets in financial markets, chaos in quantum physics, river flows through time, irregular images, weather events and contaminant diffusio
n problems.
Sommario
1. Introduction.- 2. Preliminaries.- 3. Estimation of the Parameters.- 4. Simulation Algorithms and Simulation Studies.- 5. Proofs of all the results.- A. Complementary Results.- A.1. Introduction.- A.2. Proofs.- B. Tables and Figures Related to the Simulation Studies.- C. Some Pascal Procedures and Functions.- References.- Index.
Info autore
Corinne Berzin received a degree of "Agrégation de mathématiques" from Lille University, Lille, France, in 1985. She got her Ph.D. degree in 1989 from Université Paris-Sud, Orsay, France, under the supervision of D. Dacunha-Castelle and M. Wschebor. From 1990 to 1999, she was Assistant Professor at Université de Versailles Saint-Quentin-en-Yvelines, France. Since 1999, as Professor of Mathematics, she affiliated to Université de Grenoble Alpes and is a researcher of the IPS team at Laboratoire Jean-Kuntzmann (Grenoble, France). Her research interests are focused on random fields, crossings and local time, density estimation, estimation in stochastic differential equations driven by fractional Brownian motion.
Alain Latour got his Ph.D. in computer science from Université de Montréal in 1986.He started his career at Université du Québec à Montréal (UQÀM) were he was full professor at the Department of Mathematics. During many years he was responsible for the Statistics group of this department and Director of the Data Analysis Consulting Service. He definitively left Montreal for Grenoble in 2005 but is still Associated professor at UQÀM. He remains associated researcher in the Applied Stochastic Modeling Team at UQÀM. Now, he his affiliated to Université de Grenoble Alpes and researcher of the IPS team at Laboratoire Jean-Kuntzmann (Grenoble, France). He is mainly interested in estimation problems and modeling of stochastic processes and in data analysi
s in general.
Riassunto
This book is devoted to a number of stochastic models that display scale invariance. It primarily focuses on three issues: probabilistic properties, statistical estimation and simulation of the processes considered.It will be of interest to probability specialists, who will find here an uncomplicated presentation of statistics tools and to those statisticians who wants to tackle the most recent theories in probability in order to develop Central Limit Theorems in this context; both groups will also benefit from the section on simulation. Algorithms are described in great detail, with a focus on procedures that is not usually found in mathematical treatises. The models studied are fractional Brownian motions and processes that derive from them through stochastic differential equations.Concerning the proofs of the limit theorems, the “Fourth Moment Theorem” is systematically used, as it produces rapid and helpful proofs that can serve as models for the future. Readers will also find elegant and new proofs for almost sure convergence.The use of diffusion models driven by fractional noise has been popular for more than two decades now. This popularity is due both to the mathematics itself and to its fields of application. With regard to the latter, fractional models are useful for modeling real-life events such as value assets in financial markets, chaos in quantum physics, river flows through time, irregular images, weather events and contaminant diffusion problems.
Testo aggiuntivo
“I can recommend it to statisticians, specialists in probability and, in general, any person interested in simulations and algorithms for fBm. The book mainly develops estimation techniques for the Hurst parameter H and the local variance or volatility of four models of stochastic differential equations (SDEs) driven by fractional noise.” (María J. Garrido-Atienza, Mathematical Reviews, August, 2015)
Relazione
"I can recommend it to statisticians, specialists in probability and, in general, any person interested in simulations and algorithms for fBm. The book mainly develops estimation techniques for the Hurst parameter H and the local variance or volatility of four models of stochastic differential equations (SDEs) driven by fractional noise." (María J. Garrido-Atienza, Mathematical Reviews, August, 2015)
Dettagli sul prodotto
Autori | Corinn Berzin, Corinne Berzin, Alai Latour, Alain Latour, José R León, José R. León |
Editore | Springer, Berlin |
Lingue | Inglese |
Formato | Tascabile |
Pubblicazione | 26.05.2014 |
EAN | 9783319078748 |
ISBN | 978-3-31-907874-8 |
Pagine | 169 |
Dimensioni | 159 mm x 235 mm x 9 mm |
Peso | 312 g |
Illustrazioni | XXVIII, 169 p. 26 illus., 17 illus. in color. |
Serie |
Lecture Notes in Statistics Lecture Notes in Statistics |
Categoria |
Scienze naturali, medicina, informatica, tecnica
> Matematica
> Teoria delle probabilità, stocastica, statistica matematica
|
Recensioni dei clienti
Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.
Scrivi una recensione
Top o flop? Scrivi la tua recensione.