Fr. 192.00

Finite Model Theory - Second Edition

Inglese · Copertina rigida

Spedizione di solito entro 4 a 7 giorni lavorativi

Descrizione

Ulteriori informazioni

Finite model theory, the model theory of finite structures, has roots in clas sical model theory; however, its systematic development was strongly influ enced by research and questions of complexity theory and of database theory. Model theory or the theory of models, as it was first named by Tarski in 1954, may be considered as the part of the semantics of formalized languages that is concerned with the interplay between the syntactic structure of an axiom system on the one hand and (algebraic, settheoretic, . . . ) properties of its models on the other hand. As it turned out, first-order language (we mostly speak of first-order logic) became the most prominent language in this respect, the reason being that it obeys some fundamental principles such as the compactness theorem and the completeness theorem. These principles are valuable modeltheoretic tools and, at the same time, reflect the expressive weakness of first-order logic. This weakness is the breeding ground for the freedomwhich modeltheoretic methods rest upon. By compactness, any first-order axiom system either has only finite models of limited cardinality or has infinite models. The first case is trivial because finitely many finite structures can explicitly be described by a first-order sentence. As model theory usually considers all models of an axiom system, modeltheorists were thus led to the second case, that is, to infinite structures. In fact, classical model theory of first-order logic and its generalizations to stronger languages live in the realm of the infinite.

Sommario

Preliminaries.- The Ehrenfeucht-Fraïssé Method.- More on Games.- 0-1 Laws.- Satisfiability in the Finite.- Finite Automata and Logic: A Microcosm of Finite Model Theory.- Descriptive Complexity Theory.- Logics with Fixed-Point Operators.- Logic Programs.- Optimization Problems.- Logics for PTIME.- Quantifiers and Logical Reductions.

Info autore

Prof. Dr. H.-D. Ebbinghaus ist Leiter des Instituts für Mathematische Logik an der Universität Freiburg. Durch Veröffentlichungen hat der Autor einen hohen Bekanntheitsgrad in der Hochschulmathematik.

Dettagli sul prodotto

Autori Heinz-Diete Ebbinghaus, Heinz-Dieter Ebbinghaus, Jörg Flum
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.01.2005
 
EAN 9783540287872
ISBN 978-3-540-28787-2
Pagine 360
Dimensioni 156 mm x 234 mm x 241 mm
Peso 733 g
Illustrazioni XI, 360 p.
Serie Springer Monographs in Mathematics
Perspectives in Mathematical Logic
Schriftenreihe Markt und Marketing
Springer Monographs in Mathematics
Schriftenreihe Markt und Marketing
Perspectives in Mathematical Logic
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Fondamenti

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.