Fr. 105.60

Random Matrix Models and Their Applications

Inglese · Tascabile

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni

Klappentext Random matrices arise from, and have important applications to, number theory, probability, combinatorics, representation theory, quantum mechanics, solid state physics, quantum field theory, quantum gravity, and many other areas of physics and mathematics. This 2001 volume of surveys and research results, based largely on lectures given at the Spring 1999 MSRI program of the same name, covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems. Its stress on the interaction between physics and mathematics will make it a welcome addition to the shelves of graduate students and researchers in both fields, as will its expository emphasis. Zusammenfassung First published in 2000! this expository volume of surveys and research results covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits! universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems. Inhaltsverzeichnis 1. Symmetrized random permutations Jinho Baik and Eric M. Rains; 2. Hankel determinants as Fredholm determinants Estelle L. Basor, Yang Chen and Harold Widom; 3. Universality and scaling of zeros on symplectic manifolds Pavel Bleher, Bernard Shiffman and Steve Zelditch; 4. Z measures on partitions, Robinson-Schensted-Knuth correspondence, and random matrix ensembles Alexei Borodin and Grigori Olshanski; 5. Phase transitions and random matrices Giovanni M. Cicuta; 6. Matrix model combinatorics: applications to folding and coloring Philippe Di Francesco; 7. Inter-relationships between orthogonal, unitary and symplectic matrix ensembles Peter J. Forrester and Eric M. Rains; 8. A note on random matrices John Harnad; 9. Orthogonal polynomials and random matrix theory Mourad E. H. Ismail; 10. Random words, Toeplitz determinants and integrable systems I, Alexander R. Its, Craig A. Tracy and Harold Widom; 11. Random permutations and the discrete Bessel kernel Kurt Johansson; 12. Solvable matrix models Vladimir Kazakov; 13. Tau function for analytic Curves I. K. Kostov, I. Krichever, M. Mineev-Vainstein, P. B. Wiegmann and A. Zabrodin; 14. Integration over angular variables for two coupled matrices G. Mahoux, M. L. Mehta and J.-M. Normand; 15. SL and Z-measures Andrei Okounkov; 16. Integrable lattices: random matrices and random permutations Pierre Van Moerbeke; 17. Some matrix integrals related to knots and links Paul Zinn-Justin....

Dettagli sul prodotto

Autori Pavel Bleher, Pavel (Purdue University Bleher, Pavel M. Its Bleher
Con la collaborazione di Pavel Bleher (Editore), Alexander Its (Editore)
Editore Cambridge University Press ELT
 
Lingue Inglese
Formato Tascabile
Pubblicazione 28.04.2011
 
EAN 9780521175166
ISBN 978-0-521-17516-6
Pagine 450
Serie Mathematical Sciences Research
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.