Fr. 134.00

Surveys in Applied Mathematics

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Partial differential equations play a central role in many branches of science and engineering. Therefore it is important to solve problems involving them. One aspect of solving a partial differential equation problem is to show that it is well-posed, i. e. , that it has one and only one solution, and that the solution depends continuously on the data of the problem. Another aspect is to obtain detailed quantitative information about the solution. The traditional method for doing this was to find a representation of the solution as a series or integral of known special functions, and then to evaluate the series or integral by numerical or by asymptotic methods. The shortcoming of this method is that there are relatively few problems for which such representations can be found. Consequently, the traditional method has been replaced by methods for direct solution of problems either numerically or asymptotically. This article is devoted to a particular method, called the "ray method," for the asymptotic solution of problems for linear partial differential equations governing wave propagation. These equations involve a parameter, such as the wavelength. . , which is small compared to all other lengths in the problem. The ray method is used to construct an asymptotic expansion of the solution which is valid near . . = 0, or equivalently for k = 21r I A near infinity.

Sommario

Asymptotic Methods for the Reduced Wave Equation and Maxwell's Equations; J.B. Keller. Whiskered Tori for Integrable PDE's-Chaotic Behavior in Near Integrable PDE's; D.W. McLaughlin, E.A. Overman, II. Diffusion in Random Media; G.C. Papanicolaou. Index.

Dettagli sul prodotto

Autori Joseph Keller, Joseph B Keller, Joseph B. Keller, David McLaughlin, David W McLaughlin, David W. McLaughlin, Papanicolaou, George C. Papanicolaou
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 22.04.2014
 
EAN 9781489904386
ISBN 978-1-4899-0438-6
Pagine 264
Dimensioni 178 mm x 15 mm x 254 mm
Peso 537 g
Illustrazioni XII, 264 p.
Serie Surveys in Applied Mathematics
Surveys in Applied Mathematics
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.