Esaurito

An Introduction to Goedel's Theorems

Inglese · Tascabile

Descrizione

Ulteriori informazioni

Klappentext An extensively rewritten second edition of this best-selling standard text for graduates and upper-level undergraduate students of logic! philosophy of mathematics! and pure mathematics. A clear and accessible treatment of Goedel's famous! intriguing! but much misunderstood incompleteness theorems. Zusammenfassung An extensively rewritten second edition of this best-selling standard text for graduates and upper-level undergraduate students of logic, philosophy of mathematics, and pure mathematics. A clear and accessible treatment of Goedel's famous, intriguing, but much misunderstood incompleteness theorems.

Sommario

Preface; 1. What Gödel's theorems say; 2. Functions and enumerations; 3. Effective computability; 4. Effectively axiomatized theories; 5. Capturing numerical properties; 6. The truths of arithmetic; 7. Sufficiently strong arithmetics; 8. Interlude: taking stock; 9. Induction; 10. Two formalized arithmetics; 11. What Q can prove; 12. Io, an arithmetic with induction; 13. First-order Peano arithmetic; 14. Primitive recursive functions; 15. LA can express every p.r. function; 16. Capturing functions; 17. Q is p.r. adequate; 18. Interlude: a very little about Principia; 19. The arithmetization of syntax; 20. Arithmetization in more detail; 21. PA is incomplete; 22. Gödel's First Theorem; 23. Interlude: about the First Theorem; 24. The Diagonalization Lemma; 25. Rosser's proof; 26. Broadening the scope; 27. Tarski's Theorem; 28. Speed-up; 29. Second-order arithmetics; 30. Interlude: incompleteness and Isaacson's thesis; 31. Gödel's Second Theorem for PA; 32. On the 'unprovability of consistency'; 33. Generalizing the Second Theorem; 34. Löb's Theorem and other matters; 35. Deriving the derivability conditions; 36. 'The best and most general version'; 37. Interlude: the Second Theorem, Hilbert, minds and machines; 38. mi-Recursive functions; 39. Q is recursively adequate; 40. Undecidability and incompleteness; 41. Turing machines; 42. Turing machines and recursiveness; 43. Halting and incompleteness; 44. The Church-Turing thesis; 45. Proving the thesis?; 46. Looking back.

Relazione

'Smith breathes new life into the work of Kurt Godel in this second edition ... Recommended. Upper-division undergraduates through professionals.' R. L. Pour, Choice

Dettagli sul prodotto

Autori Peter Smith, Peter (University of Cambridge) Smith
Editore Cambridge University Press Academic
 
Lingue Inglese
Formato Tascabile
Pubblicazione 21.02.2013
 
EAN 9781107606753
ISBN 978-1-107-60675-3
Pagine 402
Serie Cambridge Introductions to Philosophy
Cambridge Introductions to Phi
Cambridge Introductions to Philosophy
Cambridge Introductions to Phi
Categoria Scienze umane, arte, musica > Religione / teologia

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.