Ulteriori informazioni
Klappentext An extensively rewritten second edition of this best-selling standard text for graduates and upper-level undergraduate students of logic! philosophy of mathematics! and pure mathematics. A clear and accessible treatment of Goedel's famous! intriguing! but much misunderstood incompleteness theorems. Zusammenfassung An extensively rewritten second edition of this best-selling standard text for graduates and upper-level undergraduate students of logic, philosophy of mathematics, and pure mathematics. A clear and accessible treatment of Goedel's famous, intriguing, but much misunderstood incompleteness theorems.
Sommario
Preface; 1. What Gödel's theorems say; 2. Functions and enumerations; 3. Effective computability; 4. Effectively axiomatized theories; 5. Capturing numerical properties; 6. The truths of arithmetic; 7. Sufficiently strong arithmetics; 8. Interlude: taking stock; 9. Induction; 10. Two formalized arithmetics; 11. What Q can prove; 12. Io, an arithmetic with induction; 13. First-order Peano arithmetic; 14. Primitive recursive functions; 15. LA can express every p.r. function; 16. Capturing functions; 17. Q is p.r. adequate; 18. Interlude: a very little about Principia; 19. The arithmetization of syntax; 20. Arithmetization in more detail; 21. PA is incomplete; 22. Gödel's First Theorem; 23. Interlude: about the First Theorem; 24. The Diagonalization Lemma; 25. Rosser's proof; 26. Broadening the scope; 27. Tarski's Theorem; 28. Speed-up; 29. Second-order arithmetics; 30. Interlude: incompleteness and Isaacson's thesis; 31. Gödel's Second Theorem for PA; 32. On the 'unprovability of consistency'; 33. Generalizing the Second Theorem; 34. Löb's Theorem and other matters; 35. Deriving the derivability conditions; 36. 'The best and most general version'; 37. Interlude: the Second Theorem, Hilbert, minds and machines; 38. mi-Recursive functions; 39. Q is recursively adequate; 40. Undecidability and incompleteness; 41. Turing machines; 42. Turing machines and recursiveness; 43. Halting and incompleteness; 44. The Church-Turing thesis; 45. Proving the thesis?; 46. Looking back.
Relazione
'Smith breathes new life into the work of Kurt Godel in this second edition ... Recommended. Upper-division undergraduates through professionals.' R. L. Pour, Choice