Fr. 288.00

Infinite-Dimensional Dynamical Systems - An Introduction to Dissipative Parabolic Pdes Theory of Global

Inglese · Copertina rigida

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni

Klappentext This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations! two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor! a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular! the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates! and assumes only a basic knowledge of Banach and Hilbert spaces! and a working understanding of the Lebesgue integral. Zusammenfassung This book treats the theory of global attractors! a recent development in the theory of partial differential equations! in a way that also includes many traditional elements of the subject. It gives a quick but directed introduction to some fundamental concepts! and by the end proceeds to current research problems. Inhaltsverzeichnis Part I. Functional Analysis: 1. Banach and Hilbert spaces; 2. Ordinary differential equations; 3. Linear operators; 4. Dual spaces; 5. Sobolev spaces; Part II. Existence and Uniqueness Theory: 6. The Laplacian; 7. Weak solutions of linear parabolic equations; 8. Nonlinear reaction-diffusion equations; 9. The Navier-Stokes equations existence and uniqueness; Part II. Finite-Dimensional Global Attractors: 10. The global attractor existence and general properties; 11. The global attractor for reaction-diffusion equations; 12. The global attractor for the Navier-Stokes equations; 13. Finite-dimensional attractors: theory and examples; Part III. Finite-Dimensional Dynamics: 14. Finite-dimensional dynamics I, the squeezing property: determining modes; 15. Finite-dimensional dynamics II, The stong squeezing property: inertial manifolds; 16. Finite-dimensional dynamics III, a direct approach; 17. The Kuramoto-Sivashinsky equation; Appendix A. Sobolev spaces of periodic functions; Appendix B. Bounding the fractal dimension using the decay of volume elements....

Dettagli sul prodotto

Autori James C. Robinson, James C. (University of Warwick) Robinson
Con la collaborazione di M. J. Ablowitz (Editore), D. G. Crighton (Editore)
Editore Cambridge University Press ELT
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 23.04.2001
 
EAN 9780521632041
ISBN 978-0-521-63204-1
Pagine 480
Serie Cambridge Texts in Applied Mat
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Geometria

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.