Fr. 135.00

Theory of Phase Transitions in Polypeptides and Proteins

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

There are nearly 100 000 different protein sequences encoded in the human genome, each with its own specific fold. Understanding how a newly formed polypeptide sequence finds its way to the correct fold is one of the greatest challenges in the modern structural biology. The aim of this thesis is to provide novel insights into protein folding by considering the problem from the point of view of statistical mechanics.
The thesis starts by investigating the fundamental degrees of freedom in polypeptides that are responsible for the conformational transitions. This knowledge is then applied in the statistical mechanics description of helix coil transitions in polypeptides. Finally, the theoretical formalism is generalized to the case of proteins in an aqueous environment. The major novelty of this work lies in combining (a) a formalism based on fundamental physical properties of the system and (b) the resulting possibility of describing the folding unfolding transitions quantitatively. The clear physical nature of the formalism opens the way to further applications in a large variety of systems and processes.

Sommario

Introduction.- Theoretical Methods of Quantum Mechanics.- Degrees of Freedom in Polypeptides and Proteins.- Partition Function of a Polypeptide.- Phase Transitions in Polypeptides.- Folding of Proteins in Aqueous Environment.

Riassunto

There are nearly 100 000 different protein sequences encoded in the human genome, each with its own specific fold. Understanding how a newly formed polypeptide sequence finds its way to the correct fold is one of the greatest challenges in the modern structural biology. The aim of this thesis is to provide novel insights into protein folding by considering the problem from the point of view of statistical mechanics.
The thesis starts by investigating the fundamental degrees of freedom in polypeptides that are responsible for the conformational transitions. This knowledge is then applied in the statistical mechanics description of helix↔coil transitions in polypeptides. Finally, the theoretical formalism is generalized to the case of proteins in an aqueous environment. The major novelty of this work lies in combining (a) a formalism based on fundamental physical properties of the system and (b) the resulting possibility of describing the folding↔unfolding transitions quantitatively. The clear physical nature of the formalism opens the way to further applications in a large variety of systems and processes.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.