Fr. 478.40

Electron Energy-Loss Spectroscopy in the Electron Microscope

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Within the last 30 years, electron energy-loss spectroscopy (EELS) has become a standard analytical technique used in the transmission electron microscope to extract chemical and structural information down to the atomic level. In two previous editions, Electron Energy-Loss Spectroscopy in the Electron Microscope has become the standard reference guide to the instrumentation, physics and procedures involved, and the kind of results obtainable. Within the last few years, the commercial availability of lens-aberration correctors and electron-beam monochromators has further increased the spatial and energy resolution of EELS. This thoroughly updated and revised Third Edition incorporates these new developments, as well as advances in electron-scattering theory, spectral and image processing, and recent applications in fields such as nanotechnology. The appendices now contain a listing of inelastic mean free paths and a description of more than 20 MATLAB programs for calculating EELS data.
Considered the "Bible of EELS"Presents the only in-depth, single-author text for the still-expanding field of TEM-EELSResponds to many requests for the first new edition of this classic work since 1996Includes discussion of new spectrometer and detector designs, together with spectral-analysis techniques such as Bayesian deconvolution and multivariate statistical analysisProvides extended discussion of anisotropic materials, retardation effects, delocalization of inelastic scattering, and the simulation of energy-loss fine structure.Describes recent applications of EELS to fields such as nanotechnology, electronic devices and carbon-based materials.Offers extended coverage of radiation damage and delocalization as limits to spatial resolution.From reviews of the first and second edition:
"The text....contains a wealth of practical detail and experimental insight....This book is an essential purchase for any microscopist who is using, or planning to use, electron spectroscopy or spectroscopic imaging." JMSA
"Provides the advanced student with an indispensible text and the experienced researcher with a valuable reference." -- American Scientist

Sommario

Chapter 1. An Introduction to EELS
1.1. Interaction of Fast Electrons with a Solid
1.2. The Electron Energy-Loss Spectrum
1.3. The Development of Experimental Techniques
1.3.1. Energy-Selecting (Energy-Filtering) Electron Microscopes
1.3.2. Spectrometers as Attachments to Electron Microscopes
1.4. Alternative Analytical Methods
1.4.1. Ion-Beam Methods
1.4.2. Incident Photons
1.4.3. Electron-Beam Techniques
1.5. Comparison of EELS and EDX Spectroscopy
1.5.1. Detection Limits and Spatial Resolution
1.5.2. Specimen Requirements
1.5.3. Accuracy of Quantification
1.5.4. Ease of Use and Information Content
1.6. Further Reading
Chapter 2. Energy-Loss Instrumentation
2.1. Energy-Analyzing and Energy-Selecting Systems
2.1.1. The Magnetic-Prism Spectrometer
2.1.2. Energy-Filtering Magnetic-Prism Systems
2.1.3. The Wien Filter
2.1.4. Electron Monochromators
2.2. Optics of a Magnetic-Prism Spectrometer
2.2.1. First-Order Properties
2.2.2. Higher-Order Focusing
2.2.3. Spectrometer Sesigns
2.2.4. Practical Considerations
2.2.5. Spectrometer Alignment
2.3. The Use of Prespectrometer Lenses
2.3.1. TEM Imaging and Diffraction Modes
2.3.2. Effect of Lens Aberrations on Spatial Resolution
2.3.3. Effect of Lens Aberrations on Collection Efficiency
2.3.4. Effect of TEM Lenses on Energy Resolution
2.3.5. STEM Optics
2.4. Recording the Energy-Loss Spectrum 2.4.1. Spectrum Shift and Scanning
2.4.2. Spectrometer Background
2.4.3. Coincidence Counting 2.4.4. Serial Recording of the Energy-Loss Spectrum
2.4.5. DQE of a Single-Channel System
2.4.6. Serial-Mode Signal Processing
2.5. Parallel Recording of Energy-Loss Data
2.5.1. Types of Self-Scanning Diode Array
2.5.2. Indirect Exposure Systems
2.5.3. Direct Exposure Systems
2.5.4. DQE of a Parallel-Recording System
2.5.5. Dealing with Diode Array Artifacts
2.6. Energy-Selected Imaging (ESI)
2.6.1. Post-Column Energy Filter
2.6.2. In-Column Filters
2.6.3. Energy Filtering in STEM Mode
2.6.4. Spectrum-Imaging
2.6.5. Elemental Mapping
2.6.6. Comparison of Energy-Filtered TEM and STEM
2.6.7. Z-Contrast and Z-Ratio Imaging
Chapter 3. Physics of Electron Scattering
3.1. Elastic Scattering
3.1.1. General Formulas
3.1.2. Atomic Models
3.1.3. Diffraction Effects
3.1.4. Electron Channeling
3.1.5. Phonon Scattering
3.1.6. Energy Transfer in Elastic Scattering
3.2. Inelastic Scattering
3.2.1. Atomic Models
3.2.2. Bethe Theory
3.2.3. Dielectric Formulation
3.2.4. Solid-State Effects
3.3. Excitation of Outer-Shell Electrons
3.3.1. Volume Plasmons
3.3.2. Single-Electron Excitation
3.3.3. Excitons
3.3.4. Radiation Losses
3.3.5. Surface Plasmons
3.3.6. Surface-Reflection Spectra
3.3.7. Plasmon Modes in Small Particles
3.4. Single, Plural, and Multiple Scattering
3.4.1. Poisson's Law
3.4.2. Angular Distribution of Plural Inelastic Scattering
3.4.3. Influence of Elastic Scattering
3.4.4. Multiple Scattering
3.4.5. Coherent Double-Plasmon Excitation
3.5. The Spectral Background to Inner-Shell Edges
3.5.1. Valence-Electron Scattering
3.5.2. Tails of Core-Loss Edges
3.5.3. Bremsstrahlung Energy Losses
3.5.4. Plural Scattering Contributions to the Background
3.6. Atomic Theory of Inner-Shell Excitation
3.6.1. Generalized Oscillator Strength
3.6.2. Relativistic Kinematics of Scattering
3.6.3. Ionization Cross Sections
3.7. The Form of Inner-Shell Edges
3.7.1. Basic Edge Shapes
3.7.2. Dipole Selection Rule
3.7.3. Effect of Plural Scattering
3.7.4. Chemical Shifts in Threshold Energy
3.8. Near-Edge Fine Structure (ELNES)
3.8.1. Densities-of-States Interpretation
3.8.2. Multiple-Scattering Interpretation
3.8.3. Molecular-Orbital Theory ...

Riassunto

Within the last 30 years, electron energy-loss spectroscopy (EELS) has become a standard analytical technique used in the transmission electron microscope to extract chemical and structural information down to the atomic level.  In two previous editions, Electron Energy-Loss Spectroscopy in the Electron Microscope has become the standard reference guide to the instrumentation, physics and procedures involved, and the kind of results obtainable. Within the last few years, the commercial availability of lens-aberration correctors and electron-beam monochromators has further increased the spatial and energy resolution of EELS. This thoroughly updated and revised Third Edition incorporates these new developments, as well as advances in electron-scattering theory, spectral and image processing, and recent applications in fields such as nanotechnology. The appendices now contain a listing of inelastic mean free paths and a description of more than 20 MATLAB programs for calculating EELS data.

Testo aggiuntivo

From the reviews of the third edition:
“R.F. Egerton’s Electron Energy-loss Spectroscopy in the Electron Microscope is the standard text on the subject … . The book is now very up-to-date; R.F. Egerton has clearly continued adding to the text and references up to the last minute … . Springer have printed the book beautifully, with colour in place when needed and the references now give full details … . EEL spectroscopists … cannot do without this new edition.” (Ultramicroscopy, Vol. 116, 2012)

Dettagli sul prodotto

Autori R F Egerton, R. F. Egerton, R.F. Egerton, Ray F. Egerton
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 31.08.2011
 
EAN 9781441995827
ISBN 978-1-4419-9582-7
Pagine 767
Peso 875 g
Illustrazioni 180 SW-Abb., 10 Farbabb.
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Meccanica, tecnica di produzione

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.