Ulteriori informazioni
This text is based on a lecture course given by the authors in the framework of Oberwolfach Seminars at the Mathematisches Forschungsinstitut Oberwolfach in May, 2013. It is intended to serve as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two player perfect information games. These ranges from such popular games as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hypergraphs. The subject of positional games is strongly related to several other branches of combinatorics such as Ramsey theory, extremal graph and set theory, and the probabilistic method. These notes cover a variety of topics in positional games, including both classical results and recent important developments. They are presented in an accessible way and are accompanied by exercises of varying difficulty, helping the readerto better understand the theory. The text will benefit both researchers and graduate students in combinatorics and adjacent fields.
Sommario
Preface.- 1 Introduction.- 2 Maker-Breaker Games.- 3 Biased Games.- 4 Avoider-Enforcer Games.- 5 The Connectivity Game.- 6 The Hamiltonicity Game.- 7 Fast and Strong.- 8 Random Boards.- 9 The Neighborhood Conjecture.- Bibliography.
Info autore
Riassunto
This text is based on a lecture course given by the authors in the framework of Oberwolfach Seminars at the Mathematisches Forschungsinstitut Oberwolfach in May, 2013. It is intended to serve as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two player perfect information games. These ranges from such popular games as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hypergraphs. The subject of positional games is strongly related to several other branches of combinatorics such as Ramsey theory, extremal graph and set theory, and the probabilistic method. These notes cover a variety of topics in positional games, including both classical results and recent important developments. They are presented in an accessible way and are accompanied by exercises of varying difficulty, helping the readerto better understand the theory. The text will benefit both researchers and graduate students in combinatorics and adjacent fields.
Relazione
"The present book recalls the main points of the classical theory, and describes some recent results. The text ... can be taught in a regular university class. At the end of each chapter there are exercises that help the reader to practice the trade. The intention of that structure is to provide a textbook rather than just a pure record of the lecture notes of the Oberwolfach Seminar. It certainly can be used as a textbook ... ." (András Sándor Pluhár, Mathematical Reviews, July, 2017)