Fr. 238.00

Generators and Relations in Groups and Geometries

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Every group is represented in many ways as an epimorphic image of a free group. It seems therefore futile to search for methods involving generators and relations which can be used to detect the structure of a group. Nevertheless, results in the indicated direction exist. The clue is to ask the right question. Classical geometry is a typical example in which the factorization of a motion into reflections or, more generally, of a collineation into central collineations, supplies valuable information on the geometric and algebraic structure. This mode of investigation has gained momentum since the end of last century. The tradition of geometric-algebraic interplay brought forward two branches of research which are documented in Parts I and II of these Proceedings. Part II deals with the theory of reflection geometry which culminated in Bachmann's work where the geometric information is encoded in properties of the group of motions expressed by relations in the generating involutions. This approach is the backbone of the classification of motion groups for the classical unitary and orthogonal planes. The axioms in this char acterization are natural and plausible. They provoke the study of consequences of subsets of axioms which also yield natural geometries whose exploration is rewarding. Bachmann's central axiom is the three reflection theorem, showing that the number of reflections needed to express a motion is of great importance.

Sommario

I Optimal factorization of matrices, length problems.- I.1 Classical group.- I.2 Generators of automorphism groups of module.- I.3 Generators of automorphism groups of Cayley algebra.- I.4 Products of matrice.- II Reflection geometry.- II.1 Reflection groups - On pre-Hjelmslev groups and related topic.- II.2 Unitary geometry.- II.3 Lie and algebraic Johnsen group.- III Nice generators and relations, applications.- III.1 2-Generation of finite simple groups and some related topic.- III.2 Coxeter groups and three related topic.- III.3 Geometric structure of conjugacy classes in algebraic group.- III.4 Groups with polynomial growth and differential geometry.- III.5 Analyticity and growth of pro p-group.- III.6 Intersections of local algebraic extensions of a Hilbertian fiel.- III.7 Generators and relations for discontinuous group.

Dettagli sul prodotto

Con la collaborazione di A. Barlotti (Editore), E. W. Ellers (Editore), E.W. Ellers (Editore), P. Plaumann (Editore), P Plaumann et al (Editore), K. Strambach (Editore), W Ellers (Editore), E W Ellers (Editore)
Editore Springer Netherlands
 
Lingue Inglese
Formato Tascabile
Pubblicazione 17.10.2013
 
EAN 9789401054966
ISBN 978-94-0-105496-6
Pagine 447
Illustrazioni XV, 447 p.
Serie NATO Science Series C: (Closed
Nato Science Series C:
NATO Science Series C:
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.