Fr. 135.00

Hybrid Random Fields - A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives.
-- Manfred Jaeger, Aalborg Universitet
The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it.
-- Marco Gori, Università degli Studi di Siena

Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.

Sommario

Introduction.-
Bayesian Networks.-
Markov Random Fields.-
Introducing Hybrid Random Fields:
Discrete-Valued Variables.-
Extending Hybrid Random Fields:
Continuous-Valued Variables.-
Applications.-
Probabilistic Graphical Models:
Cognitive Science or Cognitive Technology? ..-
Conclusions.

Riassunto

This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives.-- Manfred Jaeger, Aalborg UniversitetThe book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it.-- Marco Gori, Università degli Studi di SienaGraphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.

Testo aggiuntivo

From the reviews:
“This book presents novel probabilistic graphical models, i.e., hybrid random fields. … the authors have written a very valuable book – rigorous in the treatment on the mathematical background, but also enriched with a very open view of the field, full of stimulating connections.” (Jerzy Martyna, zbMATH, Vol. 1278, 2014)

Relazione

From the reviews:
"This book presents novel probabilistic graphical models, i.e., hybrid random fields. ... the authors have written a very valuable book - rigorous in the treatment on the mathematical background, but also enriched with a very open view of the field, full of stimulating connections." (Jerzy Martyna, zbMATH, Vol. 1278, 2014)

Dettagli sul prodotto

Autori Antonin Freno, Antonino Freno, Edmondo Trentin
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 06.06.2013
 
EAN 9783642268182
ISBN 978-3-642-26818-2
Pagine 210
Dimensioni 155 mm x 235 mm x 12 mm
Peso 353 g
Illustrazioni XVIII, 210 p.
Serie Intelligent Systems Reference Library
Intelligent Systems Reference Library
Categorie Scienze naturali, medicina, informatica, tecnica > Tecnica > Tematiche generali, enciclopedie

B, machine learning, Artificial Intelligence, engineering, Computational Intelligence, Intelligent Systems, Probabilistic Graphical Models, Markov Random Fields, Kernel Methods

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.