Fr. 168.00

Numerical Solution of Stochastic Differential Equations

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The aim of this book is to provide an accessible introduction to stochastic differ ential equations and their applications together with a systematic presentation of methods available for their numerical solution. During the past decade there has been an accelerating interest in the de velopment of numerical methods for stochastic differential equations (SDEs). This activity has been as strong in the engineering and physical sciences as it has in mathematics, resulting inevitably in some duplication of effort due to an unfamiliarity with the developments in other disciplines. Much of the reported work has been motivated by the need to solve particular types of problems, for which, even more so than in the deterministic context, specific methods are required. The treatment has often been heuristic and ad hoc in character. Nevertheless, there are underlying principles present in many of the papers, an understanding of which will enable one to develop or apply appropriate numerical schemes for particular problems or classes of problems.

Sommario

1. Probability and Statistics.- 2. Probability and Stochastic Processes.- 3. Ito Stochastic Calculus.- 4. Stochastic Differential Equations.- 5. Stochastic Taylor Expansions.- 6. Modelling with Stochastic Differential Equations.- 7. Applications of Stochastic Differential Equations.- 8. Time Discrete Approximation of Deterministic Differential Equations.- 9. Introduction to Stochastic Time Discrete Approximation.- 10. Strong Taylor Approximations.- 11. Explicit Strong Approximations.- 12. Implicit Strong Approximations.- 13. Selected Applications of Strong Approximations.- 14. Weak Taylor Approximations.- 15. Explicit and Implicit Weak Approximations.- 16. Variance Reduction Methods.- 17. Selected Applications of Weak Approximations.- Solutions of Exercises.- Bibliographical Notes.

Info autore

Professor Eckhard Platen is a joint appointment between the School of Finance and Economics and the Department of Mathematical Sciences to the 1997 created Chair in Quantitative Finance at the University of Technology Sydney. Prior to this appointment he was Founding Head of the Centre for Financial Mathematics at the Institute of Advanced Studies at the Australian National University in Canberra. He completed a PhD in Mathematics at the Technical University in Dresden in 1975 and obtained in 1985 his Dr. sc. from the Academy of Sciences in Berlin, where he headed at the Weierstrass Institute the Sector of Stochastics. He is co-author of two successful books on Numerical Methods for Stochastic Differential Equations, published by Springer Verlag, and has authored more than 100 research papers in quantitative finance and mathematics.

Relazione

"... the authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible. This was not an easy task... Their exposition stresses clarity, not formality - a very welcome approach." ZAMP

Dettagli sul prodotto

Autori Peter Kloeden, Peter E Kloeden, Peter E. Kloeden, Eckhard Platen
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 12.10.2010
 
EAN 9783642081071
ISBN 978-3-642-08107-1
Pagine 636
Dimensioni 155 mm x 246 mm x 37 mm
Peso 1076 g
Illustrazioni XXXVI, 636 p.
Serie Stochastic Modelling and Applied Probability
Stochastic Modelling and Applied Probability
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Teoria delle probabilità, stocastica, statistica matematica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.