Fr. 134.00

G-Convergence and Homogenization of Nonlinear Partial Differential Operators

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Various applications of the homogenization theory of partial differential equations resulted in the further development of this branch of mathematics, attracting an increasing interest of both mathematicians and experts in other fields. In general, the theory deals with the following: Let Ak be a sequence of differential operators, linear or nonlinepr. We want to examine the asymptotic behaviour of solutions uk to the equation Auk = f, as k ~ =, provided coefficients of Ak contain rapid oscillations. This is the case, e. g. when the coefficients are of the form a(e/x), where the function a(y) is periodic and ek ~ 0 ask~=. Of course, of oscillation, like almost periodic or random homogeneous, are of many other kinds interest as well. It seems a good idea to find a differential operator A such that uk ~ u, where u is a solution of the limit equation Au = f Such a limit operator is usually called the homogenized operator for the sequence Ak . Sometimes, the term "averaged" is used instead of "homogenized". Let us look more closely what kind of convergence one can expect for uk. Usually, we have some a priori bound for the solutions. However, due to the rapid oscillations of the coefficients, such a bound may be uniform with respect to k in the corresponding energy norm only. Therefore, we may have convergence of solutions only in the weak topology of the energy space.

Sommario

1 G-convergence of Abstract Operators.- 2 Strong G-convergence of Nonlinear Elliptic Operators.- 3 Homogenization of Elliptic Operators.- 4 Nonlinear Parabolic Operators.- A Homogenization of Nonlinear Difference Schemes.- A.1 Mesh Functions.- A.2 G-convergence.- A.3 Homogenization.- B Open Problems.- References.

Dettagli sul prodotto

Autori A A Pankov, A. A. Pankov, A.A. Pankov, Alexander Pankov
Con la collaborazione di Alexander Pankov (Editore)
Editore Springer Netherlands
 
Lingue Inglese
Formato Tascabile
Pubblicazione 19.10.2010
 
EAN 9789048149001
ISBN 978-90-481-4900-1
Pagine 258
Dimensioni 155 mm x 15 mm x 235 mm
Peso 423 g
Illustrazioni XIII, 258 p.
Serie Mathematics and Its Applications
Mathematics and Its Applications
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.