Fr. 237.00

Perspectives of Neural-Symbolic Integration

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

The human brain possesses the remarkable capability of understanding, - terpreting, and producing human language, thereby relying mostly on the left hemisphere. The ability to acquire language is innate as can be seen from d- orders such as speci?c language impairment (SLI), which manifests itself in a missing sense for grammaticality. Language exhibits strong compositionality and structure. Hence biological neural networks are naturally connected to processing and generation of high-level symbolic structures. Unlike their biological counterparts, arti?cial neural networks and logic do not form such a close liason. Symbolic inference mechanisms and statistical machine learning constitute two major and very di?erent paradigms in ar- ?cial intelligence which both have their strengths and weaknesses: Statistical methods o?er ?exible and highly e?ective tools which are ideally suited for possibly corrupted or noisy data, high uncertainty and missing information as occur in everyday life such as sensor streams in robotics, measurements in medicine such as EEG and EKG, ?nancial and market indices, etc. The m- els, however, are often reduced to black box mechanisms which complicate the integration of prior high level knowledge or human inspection, and they lack theabilitytocopewitharichstructureofobjects,classes,andrelations. S- bolic mechanisms, on the other hand, are perfectly applicative for intuitive human-machine interaction, the integration of complex prior knowledge, and well founded recursive inference. Their capability of dealing with uncertainty andnoiseandtheire?ciencywhenaddressingcorruptedlargescalereal-world data sets, however, is limited. Thus, the inherent strengths and weaknesses of these two methods ideally complement each other.

Sommario

Structured Data and Neural Networks.- Kernels for Strings and Graphs.- Comparing Sequence Classification Algorithms for Protein Subcellular Localization.- Mining Structure-Activity Relations in Biological Neural Networks using NeuronRank.- Adaptive Contextual Processing of Structured Data by Recursive Neural Networks: A Survey of Computational Properties.- Markovian Bias of Neural-based Architectures With Feedback Connections.- Time Series Prediction with the Self-Organizing Map: A Review.- A Dual Interaction Perspective for Robot Cognition: Grasping as a "Rosetta Stone".- Logic and Neural Networks.- SHRUTI: A Neurally Motivated Architecture for Rapid, Scalable Inference.- The Core Method: Connectionist Model Generation for First-Order Logic Programs.- Learning Models of Predicate Logical Theories with Neural Networks Based on Topos Theory.- Advances in Neural-Symbolic Learning Systems: Modal and Temporal Reasoning.- Connectionist Representation of Multi-Valued Logic Programs.

Riassunto

The human brain possesses the remarkable capability of understanding, - terpreting, and producing human language, thereby relying mostly on the left hemisphere. The ability to acquire language is innate as can be seen from d- orders such as speci?c language impairment (SLI), which manifests itself in a missing sense for grammaticality. Language exhibits strong compositionality and structure. Hence biological neural networks are naturally connected to processing and generation of high-level symbolic structures. Unlike their biological counterparts, arti?cial neural networks and logic do not form such a close liason. Symbolic inference mechanisms and statistical machine learning constitute two major and very di?erent paradigms in ar- ?cial intelligence which both have their strengths and weaknesses: Statistical methods o?er ?exible and highly e?ective tools which are ideally suited for possibly corrupted or noisy data, high uncertainty and missing information as occur in everyday life such as sensor streams in robotics, measurements in medicine such as EEG and EKG, ?nancial and market indices, etc. The m- els, however, are often reduced to black box mechanisms which complicate the integration of prior high level knowledge or human inspection, and they lack theabilitytocopewitharichstructureofobjects,classes,andrelations. S- bolic mechanisms, on the other hand, are perfectly applicative for intuitive human-machine interaction, the integration of complex prior knowledge, and well founded recursive inference. Their capability of dealing with uncertainty andnoiseandtheire?ciencywhenaddressingcorruptedlargescalereal-world data sets, however, is limited. Thus, the inherent strengths and weaknesses of these two methods ideally complement each other.

Dettagli sul prodotto

Con la collaborazione di Barbar Hammer (Editore), Barbara Hammer (Editore), Hitzler (Editore), Hitzler (Editore), Pascal Hitzler (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 12.10.2010
 
EAN 9783642093227
ISBN 978-3-642-09322-7
Pagine 319
Dimensioni 155 mm x 18 mm x 235 mm
Peso 511 g
Illustrazioni XIII, 319 p.
Serie Studies in Computational Intelligence
Studies in Computational Intelligence
Categorie Scienze naturali, medicina, informatica, tecnica > Tecnica > Tematiche generali, enciclopedie

C, Model, Künstliche Intelligenz, Robotics, Artificial Intelligence, Logic, Classification, Modeling, Robot, Learning, Cognition, engineering, Mathematical and Computational Engineering, Engineering mathematics, Applied mathematics, Mathematical and Computational Engineering Applications

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.