Fr. 235.20

Is There A Temperature? - Conceptual challenges at high energy, acceleration and complexity

Inglese · Copertina rigida

Spedizione di solito entro 3 a 5 settimane (il titolo viene procurato in modo speciale)

Descrizione

Ulteriori informazioni

Temperature and heat, entropy and order or disorder are key classical concepts of physics. These are challenged by searching matter under extreme conditions, such as high (relativistic) energy, strong acceleration or gravitation, or unusual complexity due to long range correlations. In our quest for quark matter all these conditions might occur simultaneously. This book, strongly motivated by the authors' everyday research experiences in the field of high-energy heavy-ion collisions, aims to bundle these challenges to modern physics.
The main topic is at the heart of thermodynamics -- the very concept of temperature, its use and extensions. New developments on this issue are both applications and foundations of non-extensive statistics, as well as concepts borrowed from gravity and string theory to describe the surprisingly statistical behavior of elementary matter at the highest accelerator energies of the world.

The reader will benefit from bringing these new developments in one book together, by having the view of classical and modern concepts at the heart of physics across the problems related to high-energy, high acceleration and high complexity.
After reviewing the classical approaches, the author discusses the dual-gravity and non-extensive statistical aspects of heavy-ion collisions, describing these experimental findings with the use of the concept of temperature.

Sommario

Introduction.- How to measure the temperature.- How to interpret the temperature.- Fluctuating temperature.- Complications with the temperature.- The temperature of moving bodies.- The temperature of no return.- The temperature in quantum field theory.- Afterword.- Solutions.- References.

Riassunto

Temperature and heat, entropy and order or disorder are key classical concepts of physics. These are challenged by searching matter under extreme conditions, such as high (relativistic) energy, strong acceleration or gravitation, or unusual complexity due to long range correlations. In our quest for quark matter all these conditions might occur simultaneously. This book, strongly motivated by the authors' everyday research experiences in the field of high-energy heavy-ion collisions, aims to bundle these challenges to modern physics.
The main topic is at the heart of thermodynamics -- the very concept of temperature, its use and extensions. New developments on this issue are both applications and foundations of non-extensive statistics, as well as concepts borrowed from gravity and string theory to describe the surprisingly statistical behavior of elementary matter at the highest accelerator energies of the world.
The reader will benefit from bringing these new developments in one book together, by having the view of classical and modern concepts at the heart of physics across the problems related to high-energy, high acceleration and high complexity.
After reviewing the classical approaches, the author discusses the dual-gravity and non-extensive statistical aspects of heavy-ion collisions, describing these experimental findings with the use of the concept of temperature.

Dettagli sul prodotto

Autori Tamas Sandor Biro, Tamás Sándor Biró, Tamás Sándor Bíró
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 19.10.2010
 
EAN 9781441980403
ISBN 978-1-4419-8040-3
Pagine 310
Dimensioni 167 mm x 21 mm x 241 mm
Peso 663 g
Illustrazioni XIV, 310 p.
Serie Fundamental Theories of Physics
Fundamental Theories of Physic
Fundamental Theories of Physics
Fundamental Theories of Physic
Categoria Scienze naturali, medicina, informatica, tecnica > Fisica, astronomia > Termodinamica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.