Ulteriori informazioni
Informationen zum Autor BERTIL GUSTAFSSON, PhD, is Professor Emeritus in the Department of Information Technology at Uppsala University and is well known for his work in initial-boundary value problems. HEINZ-OTTO KREISS, PhD, is Professor Emeritus in the Department of Mathematics at University of California, Los Angeles and is a renowned mathematician in the field of applied mathematics. JOSEPH OLIGER, PhD, was Professor in the Department of Computer Science at Stanford University and was well known for his early research in numerical methods for partial differential equations. Klappentext Praise for the First Edition". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations."--SIAM ReviewTime-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods.The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes:* High order methods on staggered grids* Extended treatment of Summation By Parts operators and their application to second-order derivatives* Simplified presentation of certain parts and proofsTime-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations. Zusammenfassung Written by authors at the forefront of their field, this Second Edition discusses problems with periodic solutions, and presents new information on initial boundary value problems and numerical methods for partial differential equations. Inhaltsverzeichnis Preface ix Preface to the First Edition xi PART I PROBLEMS WITH PERIODIC SOLUTIONS 1 1. Model Equations 3 1.1. Periodic Gridfunctions and Difference Operators 3 1.2. First-Order Wave Equation Convergence and Stability 10 1.3. Leap-Frog Scheme 20 1.4. Implicit Methods 24 1.5. Truncation Error 27 1.6. Heat Equation 30 1.7. Convection-Diffusion Equation 36 1.8. Higher Order Equations 39 1.9. Second-Order Wave Equation 41 1.10. Generalization to Several Space Dimensions 43 2. Higher Order Accuracy 47 2.1. Efficiency of Higher Order Accurate Difference Approximations 47 2.2. Time Discretization 57 3. Well-Posed Problems 65 3.1. Introduction 65 3.2. Scalar Differential Equations with Constant Coefficients in One Space Dimension 70 3.3. First-Order Systems with Constant Coefficients in One Space Dimension 72 3.4. Parabolic Systems with Constant Coefficients in One Space Dimension 77 3.5. General Systems with Constant Coefficients 80 3.6. General Systems with Variable Coeffic...