Fr. 69.00

Robust Emotion Recognition using Spectral and Prosodic Features

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

In this brief, the authors discuss recently explored spectral (sub-segmental and pitch synchronous) and prosodic (global and local features at word and syllable levels in different parts of the utterance) features for discerning emotions in a robust manner.The authors also delve into the complementary evidences obtained from excitation source, vocal tract system and prosodic features for the purpose of enhancing emotion recognition performance. Features based on speaking rate characteristics are explored with the help of multi-stage and hybrid models for further improving emotion recognition performance. Proposed spectral and prosodic features are evaluated on real life emotional speech corpus.

Sommario

Introduction.- Robust Emotion Recognition using Pitch Synchronous and Sub-syllabic Spectral Features.- Robust Emotion Recognition using Word and Syllable Level Prosodic Features.- Robust Emotion Recognition using Combination of Excitation Source, Spectral and Prosodic Features.- Robust Emotion Recognition using Speaking Rate Features.- Emotion Recognition on Real Life Emotions.- Summary and Conclusions.- MFCC Features.- Gaussian Mixture Model (GMM).

Info autore

K. Sreenivasa Rao is at Indian Institute of Technology, Kharagpur, India.
Shashidhar G, Koolagudi is at Graphic Era University, Dehradun, India.

Riassunto

In this brief, the authors discuss recently explored spectral (sub-segmental and pitch synchronous) and prosodic (global and local features at word and syllable levels in different parts of the utterance) features for discerning emotions in a robust manner.
The authors also delve into the complementary evidences obtained from excitation source, vocal tract system and prosodic features for the purpose of enhancing emotion recognition performance. Features based on speaking rate characteristics are explored with the help of multi-stage and hybrid models for further improving emotion recognition performance. Proposed spectral and prosodic features are evaluated on real life emotional speech corpus.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.