Fr. 135.00

Topics in Numerical Analysis - With Special Emphasis on Nonlinear Problems

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This volume contains eighteen papers submitted in celebration of the sixty-fifth birthday of Professor Tetsuro Yamamoto of Ehime University. Professor Yamamoto was born in Tottori, Japan on January 4, 1937. He obtained his B. S. and M. S. in mathematics from Hiroshima University in 1959 and 1961, respec tively. In 1966, he took a lecturer position in the Department of Mathematics, Faculty of General Education, Hiroshima University and obtained his Ph. D. degree from Hiroshima University two years later. In 1969, he moved to the Department of Applied Mathematics, Faculty of Engineering, Ehime University as an associate professor and he has been a full professor of the Department of Mathematics (now Department of Mathematical Sciences), Faculty of Science, since 1975. At the early stage of his study, he was interested in algebraic eigen value problems and linear iterative methods. He published some papers on these topics in high level international journals. After moving to Ehime University, he started his research on Newton's method and Newton-like methods for nonlinear operator equations. He published many papers on error estimates of the methods. He established the remarkable result that all the known error bounds for Newton's method under the Kantorovich assumptions follow from the Newton-Kantorovich theorem, which put a period to the race of finding sharper error bounds for Newton's method.

Sommario

A Unified Approach for Bounding the Positive Root of Certain Classes of Polynomials with Applications.- Numerical Verifications of Solutions for Obstacle Problems.- On the Existence Theorems of Kantorovich, Moore and Miranda.- A Survey of Robust Preconditioning Methods.- A Box-Constrained Optimization Algorithm with Negative Curvature Directions and Spectral Projected Gradients.- Inclusions and Existence Proofs for Solutions of a Nonlinear Boundary Value Problem by Spectral Numerical Methods.- A Superlinearly and Globally Convergent Method for Reaction and Diffusion Problems with a Non-Lipschitzian Operator.- On Linear Asynchronous Iterations when the Spectral Radius of the Modulus Matrix is One.- Iterative Methods for Eigenvalue Problems with Non-differentiable Normalized Condition of a General Complex Matrix.- Global Optimization in Quadratic Semi-Infinite Programming.- Aggregation/Disaggregation Methods for p-cyclic Markov Chains.- A New Way to Describe the Symmetric Solution Set Ssym of Linear Interval Systems.- A Guaranteed Bound of the Optimal Constant in the Error Estimates for Linear Triangular Element.- Fast Verification of Solutions for Sparse Monotone Matrix Equations.- Laguerre-like Methods for the Simultaneous Approximation of Polynomial Zeros.- A Smoothing Newton Method for Ball Constrained Variational Inequalities with Applications.- An Explicit Inversion Formula for Tridiagonal Matrices.- On the Rate of Convergence of the Levenberg-Marquardt Method.

Riassunto

This volume contains eighteen papers submitted in celebration of the sixty-fifth birthday of Professor Tetsuro Yamamoto of Ehime University. Professor Yamamoto was born in Tottori, Japan on January 4, 1937. He obtained his B. S. and M. S. in mathematics from Hiroshima University in 1959 and 1961, respec tively. In 1966, he took a lecturer position in the Department of Mathematics, Faculty of General Education, Hiroshima University and obtained his Ph. D. degree from Hiroshima University two years later. In 1969, he moved to the Department of Applied Mathematics, Faculty of Engineering, Ehime University as an associate professor and he has been a full professor of the Department of Mathematics (now Department of Mathematical Sciences), Faculty of Science, since 1975. At the early stage of his study, he was interested in algebraic eigen value problems and linear iterative methods. He published some papers on these topics in high level international journals. After moving to Ehime University, he started his research on Newton's method and Newton-like methods for nonlinear operator equations. He published many papers on error estimates of the methods. He established the remarkable result that all the known error bounds for Newton's method under the Kantorovich assumptions follow from the Newton-Kantorovich theorem, which put a period to the race of finding sharper error bounds for Newton's method.

Dettagli sul prodotto

Con la collaborazione di G. Alefeld (Editore), Xiaojun Chen (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 19.11.2012
 
EAN 9783211836736
ISBN 978-3-211-83673-6
Pagine 249
Dimensioni 176 mm x 235 mm x 14 mm
Peso 500 g
Illustrazioni XII, 249 p. 11 illus.
Serie Computing Supplementa
Computing Supplementa
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Teoria delle probabilità, stocastica, statistica matematica

C, Algorithmen und Datenstrukturen, Algorithms, computer science, algorithms and data structures, Numerical analysis

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.