Fr. 134.00

Fundamental Tests of Physics with Optically Trapped Microspheres

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Fundamental Tests of Physics with Optically Trapped Microspheres details experiments on studying the Brownian motion of an optically trapped microsphere with ultrahigh resolution and the cooling of its motion towards the quantum ground state.

Glass microspheres were trapped in water, air, and vacuum with optical tweezers; and a detection system that can monitor the position of a trapped microsphere with Angstrom spatial resolution and microsecond temporal resolution was developed to study the Brownian motion of a trapped microsphere in air over a wide range of pressures. The instantaneous velocity of a Brownian particle, in particular, was studied for the very first time, and the results provide direct verification of the Maxwell-Boltzmann velocity distribution and the energy equipartition theorem for a Brownian particle. For short time scales, the ballistic regime of Brownian motion is observed, in contrast to the usual diffusive regime.

In vacuum, active feedback is used to cool the center-of-mass motion of an optically trapped microsphere from room temperature to a minimum temperature of about 1.5 mK. This is an important step toward studying the quantum behaviors of a macroscopic particle trapped in vacuum.

Sommario

Introduction.- Physical Principle of Optical Tweezers.- Optical Trapping of Glass Microspheres in Air and Vacuum.- Measuring the Instantaneous Velocity of a Brownian Particle in Air.- Towards Measurement of the Instantaneous Velocity of a Brownian Particle in Water.- Millikelvin Cooling of an Optically Trapped Microsphere in Vacuum.- Towards Quantum Ground-State Cooling.- Appendix.

Info autore

Tongcang Li received his Ph.D in Physics at the University of Texas at Austin in 2011, where he received the Outstanding Dissertation in Physics award by the Department of Physics. He is currently in the Nanoscale Science and Engineering Center at the University of California, Berkeley as a Postdoctoral Fellow. Previous positions include Graduate Research Assistant in the Center for Nonlinear Dynamics and Department of Physics at the University of Texas at Austin, as well as Postdoctoral Fellow at the University of Texas at Austin.

Riassunto

Fundamental Tests of Physics with Optically Trapped Microspheres details experiments on studying the Brownian motion of an optically trapped microsphere with ultrahigh resolution and the cooling of its motion towards the quantum ground state.

Glass microspheres were trapped in water, air, and vacuum with optical tweezers; and a detection system that can monitor the position of a trapped microsphere with Angstrom spatial resolution and microsecond temporal resolution was developed to study the Brownian motion of a trapped microsphere in air over a wide range of pressures. The instantaneous velocity of a Brownian particle, in particular, was studied for the very first time, and the results provide direct verification of the Maxwell-Boltzmann velocity distribution and the energy equipartition theorem for a Brownian particle. For short time scales, the ballistic regime of Brownian motion is observed, in contrast to the usual diffusive regime.

In vacuum, active feedback is used to cool the center-of-mass motion of an optically trapped microsphere from room temperature to a minimum temperature of about 1.5 mK. This is an important step toward studying the quantum behaviors of a macroscopic particle trapped in vacuum.

Dettagli sul prodotto

Autori Tongcang Li
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 27.09.2012
 
EAN 9781461460305
ISBN 978-1-4614-6030-5
Pagine 125
Dimensioni 175 mm x 243 mm x 13 mm
Peso 327 g
Illustrazioni XII, 125 p.
Serie Springer Theses
Springer Theses
Categoria Scienze naturali, medicina, informatica, tecnica > Fisica, astronomia > Termodinamica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.