Fr. 134.00

A New Boundary Element Formulation in Engineering

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the final integral equation involves some boundary integrals, whose evaluation requires a boundary discretization. Furthermore, all the unknowns are boundary vari ables. The model is completely new; it differs from the classical boundary element formulation ·in the way it is generated and consequently in the fi nal equations. A generalized variational principle is used as a basis for its derivation, whereas the conventional boundary element formulation is based on Green's formula (potential problems) and on Somigliana's identity (elas ticity), or alternatively through the weighted residual technique. 2 The multi-field variational principle which generates the formulation in volves three independent variables. For potential problems, these are the potential in the domain and the potential and its normal derivative on the boundary. In the case of elasticity, these variables are displacements in the domain and displacements and tractions on the boundary. For this reason, by analogy with the assumed displacement hybrid finite element model, ini tially proposed by Tong [1] in 1970, it can be called a hybrid displacement model. The final system of equations to be solved is similar to that found in a stiffness formulation. The stiffness matrix for this model is symmetric and can be evaluated by only performing integrations along the boundary.

Sommario

1 Introduction.- 1.1 The Hybrid Displacement Boundary Element Model.- 1.2 Historical Development of Variational Principles.- 1.3 Variational Principles and Finite Element Models.- 1.4 Boundary Element Method Fundamentals.- 1.5 Boundary Element Variational Formulations.- 2 Potential Problems.- 2.1 Introduction.- 2.2 Indicial Notation.- 2.3 Basic Equations.- 2.4 Generalized Variational Principle.- 2.5 Derivation of the Model.- 2.6 Symmetry of the Stiffness Matrix.- 3 Numerical Aspects in Potential Problems.- 3.1 Introduction.- 3.2 The Constant Element.- 3.3 The Quadratic Element.- 3.4 The Vector B.- 4 Elastostatics.- 4.1 Introduction.- 4.2 Basic Relations in Linear Elastostatics.- 4.3 Modified Variational Principle.- 4.4 Derivation of the Model.- 5 Numerical Aspects in Elastostatics Problems.- 5.1 Introduction.- 5.2 The Constant Element.- 5.3 The Quadratic Element.- 5.4 Computation of the Submatrices Fii.- 5.5 Body Forces.- 6 Numerical Applications.- 6.1 Introduction.- 6.2 Examples for Potential Problems.- 6.3 Elasticity Problems.- 7 Conclusions.- 8 Bibliography.

Dettagli sul prodotto

Autori Tania G B DeFigueiredo, Tania G. B. DeFigueiredo, Tania G.B. DeFigueiredo
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 16.11.2012
 
EAN 9783540540304
ISBN 978-3-540-54030-4
Pagine 198
Peso 378 g
Illustrazioni IX, 198 p.
Serie Lecture Notes in Engineering
Lecture Notes in Engineering
Categoria Scienze naturali, medicina, informatica, tecnica > Fisica, astronomia > Meccanica, acustica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.