Fr. 134.00

Systems Analysis by Graphs and Matroids - Structural Solvability and Controllability

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Recent technology involves large-scale physical or engineering systems consisting of thousands of interconnected elementary units. This monograph illustrates how engineering problems can be solved using the recent results of combinatorial mathematics through appropriate mathematical modeling. The structural solvability of a system of linear or nonlinear equations as well as the structural controllability of a linear time-invariant dynamical system are treated by means of graphs and matroids. Special emphasis is laid on the importance of relevant physical observations to successful mathematical modelings. The reader will become acquainted with the concepts of matroid theory and its corresponding matroid theoretical approach. This book is of interest to graduate students and researchers.

Sommario

1. Preliminaries.- 1. Convention and Notation.- 2. Algebra.- 3. Graph.- 4. Matroid.- 2. Graph-Theoretic Approach to the Solvability of a System of Equations.- 5. Structural Solvability of a System of Equations.- 6. Representation Graph.- 7. Graphical Conditions for Structural Solvability.- 8. Decompositions of a Graph by Menger-type Linkings.- 9. Decompositions and Reductions of a System of Equations.- 10. Application of the Graphical Technique.- 11. Examples.- 3. Graph-Theoretic Approach to the Controllability of a Dynamical System.- 12. Descriptions of a Dynamical System.- 13. Controllability of a Dynamical System.- 14. Graphical Conditions for Structural Controllability.- 15. Discussions.- 4. Physical Observations for Faithful Formulations.- 16. Mixed Matrix for Modeling Two Kinds of Numbers.- 17. Algebraic Implication of Dimensional Consistency.- 18. Physical Matrix.- 5 Matroid-Theoretic Approach to the Solvability of a System of Equations.- 19. Rank of a Mixed Matrix.- 20. Algorithm for Computing the Rank of a Mixed Matrix.- 21. Matroidal Conditions for Structural Solvability.- 22. Combinatorial Canonical Form of a Layered Mixed Matrix.- 23. Relation to Other Decompositions.- 24. Block-Triangularization of a Mixed Matrix.- 25. Decomposition of a System of Equations.- 26. Miscellaneous Notes.- 6. Matroid-Theoretic Approach to the Controllability of a Dynamical System.- 27. Dynamical Degree of a Dynamical System.- 28. Matroidal Conditions for Structural Controllability.- 29. Algorithm for Testing the Structural Controllability.- 30. Examples.- 31. Discussions.- Conclusion.- References.

Dettagli sul prodotto

Autori Kazuo Murota
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 04.12.2012
 
EAN 9783540176596
ISBN 978-3-540-17659-6
Pagine 284
Dimensioni 165 mm x 240 mm x 17 mm
Peso 545 g
Illustrazioni X, 284 p.
Serie Algorithms and Combinatorics
Algorithms and Combinatorics
Categorie Libri per bambini e per ragazzi > Libri per ragazzi da 12 anni
Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.