Fr. 134.00

Plate Stability by Boundary Element Method

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

1. 1 Historical Background Thin plates and shells are widely used structural elements in numerous civil, mechanical, aeronautical and marine engineering design applications. Floor slabs, bridge decks, concrete pavements, sheet pile retaining walls are all, under normal lateral loading circumstances, instances of plate bending in civil engineering. The problem of elastic instability of plates occurs when load is applied in a direction parallel to the plane of the plate. The deck of a bridge subjected to a strong wind loading, the web of a girder under the action of shear forces transmitted by the flanges, the turbine blade of a machinery undergoing longitudinal temperature differentials, would all eventually buckle when the applied load, or its temperature equivalent in the last case, exceeds a certain limit, that is the buckling load. Although the plate may exhibit a considerable post-buckling strength, the buckling load is considered in many design instances, especially in aeronautical and marine engineering, as a serviceability limit because of the abrupt and substantial change in the dimensions and shape of the buckled plate. Nevertheless, the post-buckling region retains its importance either as an essential safety margin or as a stage of loading actually reached under normal loading conditions. The design engineer will therefore need rigorous tools of analysis to predict, in addition to the buckling load, the deflections and stresses at both buckling and initial post-buckling stages.

Sommario

1 Introduction.- 1.1 Historical Background.- 1.2 Stability.- 1.3 Experimental and Numerical Modelling.- 1.4 The Boundary Element Method.- 1.5 Plate Stability by BEM.- 1.6 Scope of the Present Work.- 2 Plate Stability Theory.- 2.1 Introduction.- 2.2 Stability of Structural Systems.- 2.3 Linear Theory.- 2.4 Large Deflections.- 2.5 Boundary Conditions.- 2.6 Numerical and Experimental Studies.- 2.7 Conclusions.- 3 Membrane State of Stress.- 3.1 Introduction.- 3.2 Boundary Integral Formulation.- 3.3 Boundary Element Solution.- 3.4 Numerical Implementation.- 3.5 Results.- 3.6 Conclusions.- 4 Critical Loads.- 4.1 Introduction.- 4.2 Boundary Integral Formulation.- 4.3 Boundary Element Solution.- 4.4 Numerical Implementation.- 4.5 Results.- 4.6 Conclusions.- 5 Dual Reciprocity.- 5.1 Introduction.- 5.2 Outline of the Method.- 5.3 The Discrete Points Fourier Analysis.- 5.4 The Deflection Models.- 5.5 Transformation of L(w).- 5.6 Transformation of the Domain Integral.- 5.7 The Problem of Singular Integrals.- 5.8 Eigenvalue Problem.- 5.9 Numerical Implementation.- 5.10 Results.- 5.11 Conclusions.- 6 Large Deflections.- 6.1 Introduction.- 6.2 Boundary Integral Formulation.- 6.3 Domain Deflection Models.- 6.4 Boundary Element Solution.- 6.5 Solution of the System of Equations.- 6.6 Numerical Implementation.- 6.7 Results.- 6.8 Conclusions.- 7 Conclusions.- Appendix A The Green's Identities.- Appendix B Functions of the Fundamental Solutions.- Appendix C Trigonometric Deflection Functions.- References.

Dettagli sul prodotto

Autori Abbas Elzein
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 16.11.2012
 
EAN 9783540537106
ISBN 978-3-540-53710-6
Pagine 205
Peso 384 g
Illustrazioni VII, 205 p.
Serie Lecture Notes in Engineering
Lecture Notes in Engineering
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Meccanica, tecnica di produzione

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.