Fr. 69.00

Global Analysis on Foliated Spaces

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Global analysis has as its primary focus the interplay between the local analysis and the global geometry and topology of a manifold. This is seen classicallv in the Gauss-Bonnet theorem and its generalizations. which culminate in the Ativah-Singer Index Theorem [ASI] which places constraints on the solutions of elliptic systems of partial differential equations in terms of the Fredholm index of the associated elliptic operator and characteristic differential forms which are related to global topologie al properties of the manifold. The Ativah-Singer Index Theorem has been generalized in several directions. notably by Atiyah-Singer to an index theorem for families [AS4]. The typical setting here is given by a family of elliptic operators (Pb) on the total space of a fibre bundle P = F_M_B. where is defined the Hilbert space on Pb 2 L 1p -llbl.dvollFll. In this case there is an abstract index class indlPI E ROIBI. Once the problem is properly formulated it turns out that no further deep analvtic information is needed in order to identify the class. These theorems and their equivariant counterparts have been enormously useful in topology. geometry. physics. and in representation theory.

Sommario

I. Locally Traceable Operators.- II. Foliated Spaces.- III. Tangential Cohomology.- IV. Transverse Measures.- V. Characteristic Classes.- VI. Operator Algebras.- VII. Pseudodifferential Operators.- VIII. The Index Theorem.- Appendices.- C: Positive Scalar Curvature Along the Leaves.- References.

Dettagli sul prodotto

Autori Calvin Moore, Calvin C Moore, Calvin C. Moore, Claude Schochet
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 25.07.2012
 
EAN 9781461395942
ISBN 978-1-4613-9594-2
Pagine 337
Dimensioni 155 mm x 237 mm x 20 mm
Illustrazioni VII, 337 p.
Serie Mathematical Sciences Research Institute Publications
Mathematical Sciences Research Institute Publications
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Geometria

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.