Fr. 134.00

Topics in the Calculus of Variations

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This report grew out of a series of lectures given at the East China Institute of Technology, Nanjing, during September 1992. The purpose of this book is to make beginning research students familiar with some problems in varia tional calculus which have been chosen following my personal taste but with the attempt to illustrate two basic principles in the calculus of variations which are the fundamental question of existence of (generalized) solutions and closely related the question of regularity. Chapter one is devoted to the study of variational integrals for vectorvalued functions which began with the pioneering work of Morrey [68] in the thirties. We concentrate on problems where also nonlinear side conditions are imposed on the classes of admissi ble comparison functions. As special cases we include mappings whose range is forced to lie in some Riemannian manifold possibly with boundary or functions whose Jacobian is required to be strictly positive. The variational integrals under consideration are typically nonquadratic with respect to the gradient which immediately leads us to classes of degenerate elliptic systems. Let us mention some of the most important applications: - p-harmonic maps between Riemannian manifolds - systems of degenerate variational inequalities - model problems in nonlinear elasticity. Usually by working in appropriate Sobolev spaces, the existence of gener alized solutions is rather easy to establish (see [7]) but leads to apriori dis continuous functions.

Sommario

1 Degenerate Variational Integrals with Nonlinear Side Conditions, p-harmonic Maps and Related Topics.- 1.1 Introduction, Notations and Results for Minimizers.- 1.2 Linearisation of the Minimum Property, Extension of Maps.- 1.3 Proofs of the Basic Theorems.- 1.4 A Survey on p-Harmonic Maps.- 1.5 Variational Inequalities and Asymptotically Regular Integrands.- 1.6 Approximations for some Model Problems in Nonlinear Elasticity.- 2 Manifolds of Prescribed Mean Curvature in the Setting of Geometric Measure Theory.- 2.1 The Mean Curvature Problem.- 2.2 Some Facts from Geometric Measure Theory.- 2.3 A First Approach to the Mean Curvature Problem.- 2.4 General Existence Theorems, Applications to Isoperimetric Problems.- 2.5 Tangent Cones, Small Solutions, Closed Hypersurfaces.

Info autore










Prof. Dr. Martin Fuchs ist an der Universität des Saarlandes im Bereich Variationsrechnung und partielle Differentialgleichungen mit Bezügen zur mathematischen Physik und Differentialgeometrie tätig.

Dettagli sul prodotto

Autori Martin Fuchs
Editore Vieweg+Teubner
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.1994
 
EAN 9783528066239
ISBN 978-3-528-06623-9
Pagine 148
Dimensioni 164 mm x 243 mm x 10 mm
Peso 274 g
Illustrazioni VII, 148 p.
Serie Advanced Lectures in Mathematics
Advanced Lectures in Mathematics
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.